Câu hỏi:

13/07/2024 5,832

Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH (H  BC).

a) Chứng minh rằng ΔABH ΔCBA, suy ra AB2 = BH.BC.

b) Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. Chứng minh rằng AE.AB = AF.AC.

c) Chứng minh rằng ΔAFE ΔABC.

d) Qua A vẽ đường thẳng song song với BC cắt đường thẳng HF tại I. Vẽ IN vuông góc BC tại N. Chứng minh rằng ΔHNF ΔHIC.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a) Xét tam giác vuông ABH và CBA ta có:

\[\widehat B\] chung

Suy ra ΔABH ΔCBA nên \[\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\;\] hay AB2 = BH.BC

b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật 

Do đó \[\widehat {AEF} = \widehat {AEH}\]

ΔABH ΔCBA nên \[\widehat {EAH} = \widehat {ACB}\]

Xét tam giác AEF và ACB ta có:

\[\widehat A\] chung

\[\widehat {EAH} = \widehat {ACB}\]

Suy ra ΔAEF ΔACB (g.g) nên \[\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\;\] hay AE.AB = AF.AC

d) Xét tam giác vuông HNI và HFC ta có:

\[\widehat H\] chung

Suy ra ΔHNI ΔHFC (g.g)

Nên \[\frac{{HN}}{{HF}} = \frac{{HI}}{{HC}}\;\] hay \[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]

Xét tam giác HNF và HIC ta có:

\[\widehat H\] chung

\[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]

Suy ra ΔHNF ΔHIC (c.g.c).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Bóng của một căn nhà trên mặt đất có độ dài 6m. Cùng thời điểm đó, một cọc sắt cao 2m cắm vuông góc với mặt đất có bóng dài 1,5 m (Hình 4). Tính chiều cao ngôi nhà.
Media VietJack

Xem đáp án » 13/07/2024 7,475

Câu 2:

Cho tam giác ABC nhọn có hai đường cao BM, CN cắt nhau tại H.

a) Chứng minh rằng ΔAMN ΔABC.

b) Phân giác của \[\widehat {BAC}\] cắt MN và BC lần lượt tại I và K. Chứng minh rằng \[\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\].

Xem đáp án » 13/07/2024 5,839

Câu 3:

Cho tam giác ABC nhọn có hai đường cao BE, CF cắt nhau tại H. Chứng minh rằng

a) ΔAEB ΔAFC.

b) \[\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\].

c) ΔHEF ΔHCB.

Xem đáp án » 13/07/2024 3,387

Câu 4:

Người ta đo khoảng cách giữa hai điểm D và K ở hai bờ một dòng sông (Hình 5). Cho biết KE = 90 m, KF = 160 m. Tính khoảng cách DK.
Media VietJack

Xem đáp án » 13/07/2024 2,549

Câu 5:

a) Cho hình thang ABCD (AB // CD), biết \[\widehat {ADB} = \widehat {DCB}\] (Hình 2a). Chứng minh rằng BD2 = AB.CD.

b) Cho hình thang EFGH (EF // GH), \[\widehat {HEF} = \widehat {HFG}\], EF = 9 m, GH = 16 m (Hình 2b). Tính độ dài x của HF.

Media VietJack

Xem đáp án » 13/07/2024 2,182

Câu 6:

Trong Hình 1, cho biết \[\widehat {ABD} = \widehat {ACB}\], AC = 9 cm, AD = 4 cm.

a) Chứng minh tam giác ΔABD ΔACB.

b) Tính độ dài cạnh AB.

Media VietJack

Xem đáp án » 13/07/2024 1,997

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store