Câu hỏi:
13/07/2024 4,882Cho tam giác ABC vuông tại A (AB < AC). Kẻ đường cao AH (H ∈ BC).
a) Chứng minh rằng ΔABH ᔕ ΔCBA, suy ra AB2 = BH.BC.
b) Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F. Chứng minh rằng AE.AB = AF.AC.
c) Chứng minh rằng ΔAFE ᔕ ΔABC.
d) Qua A vẽ đường thẳng song song với BC cắt đường thẳng HF tại I. Vẽ IN vuông góc BC tại N. Chứng minh rằng ΔHNF ᔕ ΔHIC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
a) Xét tam giác vuông ABH và CBA ta có:
\[\widehat B\] chung
Suy ra ΔABH ᔕ ΔCBA nên \[\frac{{AB}}{{BC}} = \frac{{BH}}{{AB}}\;\] hay AB2 = BH.BC
b) c) Tứ giác AEHF có 4 góc vuông suy ra AEHF là hình chữ nhật
Do đó \[\widehat {AEF} = \widehat {AEH}\]
ΔABH ᔕ ΔCBA nên \[\widehat {EAH} = \widehat {ACB}\]
Xét tam giác AEF và ACB ta có:
\[\widehat A\] chung
\[\widehat {EAH} = \widehat {ACB}\]
Suy ra ΔAEF ᔕ ΔACB (g.g) nên \[\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\;\] hay AE.AB = AF.AC
d) Xét tam giác vuông HNI và HFC ta có:
\[\widehat H\] chung
Suy ra ΔHNI ᔕ ΔHFC (g.g)
Nên \[\frac{{HN}}{{HF}} = \frac{{HI}}{{HC}}\;\] hay \[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Xét tam giác HNF và HIC ta có:
\[\widehat H\] chung
\[\frac{{HN}}{{HI}} = \frac{{HF}}{{HC}}\]
Suy ra ΔHNF ᔕ ΔHIC (c.g.c).CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC nhọn có hai đường cao BM, CN cắt nhau tại H.
a) Chứng minh rằng ΔAMN ᔕ ΔABC.
b) Phân giác của \[\widehat {BAC}\] cắt MN và BC lần lượt tại I và K. Chứng minh rằng \[\frac{{IM}}{{IN}} = \frac{{KB}}{{KC}}\].
Câu 3:
Cho tam giác ABC nhọn có hai đường cao BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔAEB ᔕ ΔAFC.
b) \[\frac{{HE}}{{HC}} = \frac{{HF}}{{HB}}\].
c) ΔHEF ᔕ ΔHCB.
Câu 4:
Câu 5:
a) Cho hình thang ABCD (AB // CD), biết \[\widehat {ADB} = \widehat {DCB}\] (Hình 2a). Chứng minh rằng BD2 = AB.CD.
b) Cho hình thang EFGH (EF // GH), \[\widehat {HEF} = \widehat {HFG}\], EF = 9 m, GH = 16 m (Hình 2b). Tính độ dài x của HF.
Câu 6:
Trong Hình 1, cho biết \[\widehat {ABD} = \widehat {ACB}\], AC = 9 cm, AD = 4 cm.
a) Chứng minh tam giác ΔABD ᔕ ΔACB.
b) Tính độ dài cạnh AB.
về câu hỏi!