Câu hỏi:
02/11/2023 290So sánh các cặp số sau:
a) 1,041,7 và 1,042;
b) và ;
c) 1,20,3 và 0,91,8;
d) và 3– 0,2 .
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Ta thấy 1,04 >1 và 1,7 < 2.
Do đó 1,041,7 < 1,042.
b) Ta thấy và
Do đó < .
c) Ta có: 1,20,3 > 1,20 >1 (do 1,2 > 1 và 0,3 > 0)
Và 0,91,8 < 0,90 < 1 (do 0 < 0,9 < 1 và 1,8 > 0)
Do đó 1,20,3 > 1 > 0,91,8.
d) Ta có: 30,4 > 30 = 1 (do 3 > 1 và 0,4 > 0);
3– 0,2 < 30 =1 (do 3 > 1 và – 0,2 < 0).
Do đó, ta có: 30,4 > 1> 3–0,2 hay > 1 > .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) trên đoạn .
b) trên đoạn .
Câu 3:
Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) trên đoạn [−1; 4];
b) trên đoạn .
Câu 4:
Sau khi bệnh nhân uống một liệu thuốc, lượng thuốc còn lại trong cơ thể giảm dần và được tính theo công thức D(t) = D0.at (mg) trong đó D0 và a là các hằng số dương, t là thời gian tính bằng giờ kể từ thời điểm uống thuốc.
a) Tại sao có thể khẳng định rằng 0 < a < 1?
b) Biết rằng bệnh nhân đã uống 100 mg thuốc và sau 1 giờ thì lượng thuốc trong cơ thể còn 80 mg. Hãy xác định giá trị của D0 và a.
c) Sau 5 giờ, lượng thuốc đã giảm đi bao nhiêu phần trăm so với lượng thuốc ban đầu?
Câu 5:
So sánh các cặp số sau:
a) log 4,9 và log 5,2;
b) log0,3 0,7 và log0,3 0,8;
c) và .
Câu 7:
So sánh các cặp số sau:
a) và ;
b) 6 log5 2 và 2 log5 6 ;
c) và ;
d) 2 log3 7 và 6 log9 4.
về câu hỏi!