Câu hỏi:

04/12/2023 584

Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài BC = 5cm. Độ dài AG là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C

Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài  (ảnh 1)

Xét ∆ABC có hai đường trung tuyến BN, CP cắt nhau tại G nên G là trọng tâm của ∆ABC. Do đó AG là đường trung tuyến thứ ba của tam giác.

Giả sử AG cắt BC tại O.

Khi đó O là trung điểm của BC nên GO là đường trung tuyến của ∆GBC.

Xét ΔBGC vuông tại G (do BGC^=90°), có GO là đường trung tuyến của ∆GBC nên theo kết quả của Ví dụ 2, ta suy ra OG=OB=OC=12BC.

OG=12AG (do G là trọng tâm của ∆ABC)

Suy ra AG = BC = 5 (cm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B

Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC. Trên tia đối của tia HA lấy điểm D sao cho HD = HA. Trên tia đối của (ảnh 1)

Xét ∆AHB (vuông tại H) và AHC (vuông tại H) có:

AB = AC (do ΔABC cân tại A);

AH là cạnh chung

Do đó: ΔAHB = ΔAHC (cạnh huyền – cạnh góc vuông)

Suy ra HB = HC (hai cạnh tương ứng)

Ta có CE = CB = HB + HC = 2CH

Xét ΔADE có EH là đường trung tuyến mà CE = 2CH nên C là trọng tâm của ΔADE.

Câu 2

Cho tam giác ABC có hai đường trung tuyến BD; CE sao cho BD = CE. Khi đó tam giác ABC là tam giác

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D

Cho tam giác ABC có hai đường trung tuyến BD; CE sao cho BD = CE. Khi đó tam giác ABC là tam giác (ảnh 1)

Hai đường trung tuyến BD và CE cắt nhau tại G nên G là trọng tâm của ΔABC.

Suy ra BG=23BD;CG=23CE mà BD = CE

Do đó BG = CG.

Khi đó BD – BG = CE – CG hay GD = GE.

Xét ΔBGE và ΔCGD có:

BG = CG (chứng minh trên);

BGE^=CGD^ (hai góc đối đỉnh);

GE = GD (chứng minh trên)

Do đó ΔBGE = ΔCGD (c.g.c)

Suy ra BE = CD (hai cạnh tương ứng).

Do BD và CE là hai đường trung tuyến của ∆ABC nên D, E lần lượt là trung điểm của AC, AB. Do đó AE=BE=12AB và AD=CD=12AC.

Mà BE = CD (chứng minh trên) nên AB = AC, suy ra tam giác ABC cân tại A.

Câu 3

Cho tam giác ABC cân tại A. Đường phân giác của góc A cắt đường trung tuyến BD tại K. Gọi I là trung điểm của AB. Khẳng định nào sau đây là sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho G là trọng tâm của tam giác đều ABC. Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABCAM là đường trung tuyến. Biết AM = MB = MC. Cho biết tam giác ABC là tam giác gì?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho ΔABC vuông tại A, trung tuyến AM. Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay