Câu hỏi:
13/07/2024 313Cho đoạn thẳng AB có độ dài bằng 10 cm. Lấy điểm C thuộc đoạn thẳng AB sao cho \[\frac{{CA}}{{CB}} = \frac{3}{2}\]. Lấy D thuộc tia đối của tia BA sao cho \[\frac{{DA}}{{DB}} = \frac{3}{2}.\] Tính độ dài:
a) CB;
b) DB;
c) CD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có \[\frac{{CA}}{{CB}} = \frac{3}{2}\], suy ra: \[\frac{{CA}}{3} = \frac{{CB}}{2}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{CA}}{3} = \frac{{CB}}{2} = \frac{{CA + CB}}{{3 + 2}} = \frac{{AB}}{5} = \frac{{10}}{5} = 2\].
Nên \[\frac{{CB}}{2} = 2 \Rightarrow CB = 2.2 = 4\] (cm).
b) Ta có \[\frac{{DA}}{{DB}} = \frac{3}{2}\], suy ra \[\frac{{DA}}{3} = \frac{{DB}}{2}\].
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\[\frac{{DA}}{3} = \frac{{DB}}{2} = \frac{{DA - DB}}{{3 - 2}} = \frac{{AB}}{1} = \frac{{10}}{1} = 10\].
Nên \[\frac{{DB}}{2} = 10 \Rightarrow DB = 10.2 = 20\](cm).
c) Ta có CD = CB + BD = 4 + 20 = 24 (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A và MN // BC (M ∈ AB; N ∈ AC). Cho biết AB = 9 cm, AM = 3 cm, AN = 4 cm. Tính độ dài NC, MN, BC.
Câu 2:
Trong Hình 10, cho biết QR // NP và MQ = 10 cm, QN = 5 cm, RP = 6 cm. Tính độ dài MR.
Câu 4:
Cho tam giác ABC và điểm M trên cạnh AB sao cho \[\frac{{AM}}{{MB}} = \frac{3}{2}\]. Kẻ MN // BC (N ∈ AC). Cho biết BC = 6 cm, tính độ dài MN.
Câu 5:
Cho tam giác ABC có AM là đường trung tuyến (M ∈ BC). Lấy điểm E thuộc AM sao cho AE = 3EM. Tia BE cắt AC tại N. Tính tỉ số \[\frac{{AN}}{{NC}}\].
Câu 6:
Cho tam giác ABC và điểm D trên cạnh BC sao cho \[\frac{{BD}}{{BC}} = \frac{3}{4}\], điểm E trên đoạn AD sao cho \[\frac{{AE}}{{AD}} = \frac{1}{3}\]. Gọi K là giao điểm của BE và AC. Tính tỉ số \[\frac{{AK}}{{KC}}\].
về câu hỏi!