Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Ta có CN = AC – AN = 9 – 5 = 4.
Xét ∆ABC, có MN // BC, nên theo định lí Thalès, ta có \[\frac{{AM}}{{BM}} = \frac{{AN}}{{CN}}\].
Suy ra \[BM = \frac{{AM.CN}}{{AN}} = \frac{{3.4}}{5} = 2,4\].
Vậy x = 2,4.
b) ) Ta có BC = BN + NC = 5 + 2 = 7.
Vì MN và AC cùng vuông góc với AB nên MN song song với AC.
Xét ∆ABC, có MN // AC, nên theo định lí Thalès, ta có \[\frac{{BM}}{{AB}} = \frac{{BN}}{{BC}}\].
Suy ra \[AB = \frac{{BM.BC}}{{BN}} = \frac{{3.7}}{5} = 4,2\].
Vậy y = 4,2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A và MN // BC (M ∈ AB; N ∈ AC). Cho biết AB = 9 cm, AM = 3 cm, AN = 4 cm. Tính độ dài NC, MN, BC.
Câu 2:
Trong Hình 10, cho biết QR // NP và MQ = 10 cm, QN = 5 cm, RP = 6 cm. Tính độ dài MR.
Câu 3:
Cho tam giác ABC và điểm M trên cạnh AB sao cho \[\frac{{AM}}{{MB}} = \frac{3}{2}\]. Kẻ MN // BC (N ∈ AC). Cho biết BC = 6 cm, tính độ dài MN.
Câu 4:
Cho tam giác ABC có AM là đường trung tuyến (M ∈ BC). Lấy điểm E thuộc AM sao cho AE = 3EM. Tia BE cắt AC tại N. Tính tỉ số \[\frac{{AN}}{{NC}}\].
Câu 5:
Cho đoạn thẳng AB có độ dài bằng 10 cm. Lấy điểm C thuộc đoạn thẳng AB sao cho \[\frac{{CA}}{{CB}} = \frac{3}{2}\]. Lấy D thuộc tia đối của tia BA sao cho \[\frac{{DA}}{{DB}} = \frac{3}{2}.\] Tính độ dài:
a) CB;
b) DB;
c) CD.
Câu 6:
Cho tam giác ABC và điểm D trên cạnh BC sao cho \[\frac{{BD}}{{BC}} = \frac{3}{4}\], điểm E trên đoạn AD sao cho \[\frac{{AE}}{{AD}} = \frac{1}{3}\]. Gọi K là giao điểm của BE và AC. Tính tỉ số \[\frac{{AK}}{{KC}}\].
về câu hỏi!