Câu hỏi:

12/07/2024 9,821

Cho hàm số y=x24x+1x4. Trong các khẳng định sau, khẳng định nào đúng?

A. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 2.

B. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 6.

C. Hàm số đạt cực tiểu tại x = 3, giá trị cực tiểu là y = 6.

D. Hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xét hàm số y=x24x+1x4.

Ÿ Tập xác định: D = ℝ\{4}.

Ÿ Đạo hàm y'=2x4x4x2+4x1x42=x28x+15x42.

Ta có y' = 0 x = 3 hoặc x = 5.

Bảng biến thiên:

Cho hàm số y= x^2 - 4x +1/ x-4. Trong các khẳng định sau, khẳng định nào đúng? (ảnh 1)

Từ bảng biến thiên, suy ra hàm số đạt cực tiểu tại x = 5, giá trị cực tiểu là y = 6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử hàm số bậc ba cần tìm có dạng y = f(x) = ax3 + bx2 + cx + d (a ≠ 0).

Quan sát Hình 3, ta thấy đồ thị hàm số đi qua các điểm (0; 5), (1; 1) và (3; 5).

Với x = 0 thì y = 5, thay vào hàm số ta suy ra d = 5.

Khi đó hàm số trở thành y = f(x) = ax3 + bx2 + cx + 5.

Với x = 1 thì y = 1, thay vào hàm số ta được a + b + c + 5 = 1 (1).

Ta thấy đồ thị hàm số có hai điểm cực trị là (1; 1) và (3; 5), tức là phương trình y' = 0 có hai nghiệm là x = 1 và x = 3.

Ta có y' = 3ax2 + 2bx + c.

Với x = 1 thì y' = 0 nên ta có 3a + 2b + c = 0 (2).

Với x = 3 thì y' = 0 nên ta có 27a + 6b + c = 0 (3).

Từ (1), (2) và (3) ta suy ra a = – 1; b = 6; c = – 9.

Vậy hàm số cần tìm là y = f(x) = – x3 + 6x2 – 9x + 5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP