Câu hỏi:
12/07/2024 14,993
Cho một hình trụ nội tiếp trong hình nón có chiều cao bằng 12 cm và bán kính đáy bằng 5 cm (Hình 4a). Người ta cắt hình nón, trụ này theo mặt phẳng chứa đường thẳng nối đỉnh và tâm hình tròn đáy của hình nón thì thu được một hình phẳng như Hình 4b.
a) Chứng minh rằng công thức tính bán kính r của đáy hình trụ theo chiều cao h của nó là: .
Cho một hình trụ nội tiếp trong hình nón có chiều cao bằng 12 cm và bán kính đáy bằng 5 cm (Hình 4a). Người ta cắt hình nón, trụ này theo mặt phẳng chứa đường thẳng nối đỉnh và tâm hình tròn đáy của hình nón thì thu được một hình phẳng như Hình 4b.

a) Chứng minh rằng công thức tính bán kính r của đáy hình trụ theo chiều cao h của nó là: .
Câu hỏi trong đề: Giải SGK Toán 12 CTST Bài tập cuối Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử hàm số bậc ba cần tìm có dạng y = f(x) = ax3 + bx2 + cx + d (a ≠ 0).
Quan sát Hình 3, ta thấy đồ thị hàm số đi qua các điểm (0; 5), (1; 1) và (3; 5).
Với x = 0 thì y = 5, thay vào hàm số ta suy ra d = 5.
Khi đó hàm số trở thành y = f(x) = ax3 + bx2 + cx + 5.
Với x = 1 thì y = 1, thay vào hàm số ta được a + b + c + 5 = 1 (1).
Ta thấy đồ thị hàm số có hai điểm cực trị là (1; 1) và (3; 5), tức là phương trình y' = 0 có hai nghiệm là x = 1 và x = 3.
Ta có y' = 3ax2 + 2bx + c.
Với x = 1 thì y' = 0 nên ta có 3a + 2b + c = 0 (2).
Với x = 3 thì y' = 0 nên ta có 27a + 6b + c = 0 (3).
Từ (1), (2) và (3) ta suy ra a = – 1; b = 6; c = – 9.
Vậy hàm số cần tìm là y = f(x) = – x3 + 6x2 – 9x + 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.