Các đồ thị hàm số ở Hình 34a, Hình 34b đều có đường tiệm cận đứng và đường tiệm cận ngang (hoặc tiệm cận xiên). Hỏi đó là đồ thị của hàm số nào trong các hàm số sau?
a) ;
b,
c,
Các đồ thị hàm số ở Hình 34a, Hình 34b đều có đường tiệm cận đứng và đường tiệm cận ngang (hoặc tiệm cận xiên). Hỏi đó là đồ thị của hàm số nào trong các hàm số sau?

a) ;
b,
c,
Quảng cáo
Trả lời:
Quan sát đồ thị hàm số ở Hình 34a, ta thấy đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số, đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số (đường màu xanh đi qua 2 điểm (0; 1) và (– 1; – 1)).
Trong các đáp án đã cho, xét hàm số ở đáp án c, ta thấy:
. Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số .
Ta có .
. Do đó đường thẳng y = 2x + 1 là tiệm cận xiên của đồ thị hàm số .
Vậy đồ thị hàm số ở Hình 34a là đồ thị của hàm số .
Quan sát đồ thị hàm số ở Hình 34b, ta thấy đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số, đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Trong các đáp án còn lại, ta thấy hàm số ở đáp án a thỏa mãn do:
;
.
Vậy đồ thị hàm số ở Hình 34b là đồ thị của hàm số .
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử chiều dài từng mặt của ba mặt hàng rào song song nhau là x (m).
Chi phí để làm ba mặt hàng rào song song là: 3 ∙ x ∙ 50 000 = 150 000x (đồng).
Chi phí để làm mặt hàng rào song song với bờ sông là: 15 000 000 – 150 000x (đồng).
Chiều dài của mặt hàng rào song song với bờ sông là
(m).
Rõ ràng, x phải thỏa mãn điều kiện 0 < x < 100.
Giả sử diện tích hàng rào không đáng kể, khi đó diện tích hai khu đất thu được sau khi làm hàng rào là S(x) = (m2).
Xét hàm số với x ∈ (0; 100).
Ta có S'(x) = .
Trên khoảng (0; 100), S'(x) = 0 khi x = 50.
Bảng biến thiên của hàm số S(x) như sau:

Căn cứ bảng biến thiên, ta thấy: Trên khoảng (0; 100), hàm số S(x) đạt giá trị lớn nhất bằng 6 250 tại x = 50.
Vậy diện tích lớn nhất của hai khu đất thu được sau khi làm hàng rào là 6 250 m2.
Lời giải
Gọi x (cm) là chiều rộng của trang sách.
Khi đó, chiều dài của trang sách là (cm).
Sau khi để lề thì phần in chữ có dạng hình chữ nhật có chiều rộng là x – 4 (cm) và chiều dài là (cm).
Rõ ràng, x phải thỏa mãn điều kiện 4 < x < 64.
Diện tích phần in chữ trên trang sách là
S(x) = (cm2).
Xét hàm số S(x) = với x ∈ (4; 64).
Ta có S'(x) = < 0;
S'(x) = 0 ⇔ – 6x2 + 1 536 = 0 ⇔ x = – 16 hoặc x = 16.
Khi đó trên khoảng (4; 64), S'(x) = 0 khi x = 16.
Bảng biến thiên của hàm số S(x) như sau:

Căn cứ vào bảng biến thiên, ta thấy: Trên khoảng (4; 64), hàm số S(x) đạt giá trị lớn nhất bằng 216 tại x = 16. Khi đó, .
Vậy kích thước tối ưu của trang sách là 16 × 24 (cm) thì in chữ trên trang sách có diện tích lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


