Câu hỏi:
28/06/2024 407Cho hình thoi ABCD có các cạnh bằng 3 cm. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng tỏ rằng tứ giác MNPQ là hình chữ nhật và tìm bán kính đường tròn ngoại tiếp của tứ giác đó.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
⦁ Xét ∆ABC có M, N lần lượt là trung điểm của AB, BC nên MN là đường trung bình của tam giác. Do đó MN // AC và
Chứng minh tương tự đối với ∆ACD, ta cũng có PQ // AC và
Từ (1) và (2) ta có MN // PQ và MN = PQ.
Do đó tứ giác MNPQ là hình bình hành.
Vì ABCD là hình thoi nên AC ⊥ BD. (3)
Xét ∆ABD có M, Q lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác. Do đó MQ // BD. (4)
Từ (1), (3) và (4) suy ra MN ⊥ MQ hay
Khi đó hình bình hành MNPQ là hình chữ nhật.
⦁ Vì MNPQ là hình chữ nhật nên đường tròn ngoại tiếp hình chữ nhật có tâm là giao điểm hai đường chéo MP và NQ.
Gọi O là giao điểm của AC và BD. Khi đó O là trung điểm của AC và BD.
Vì ABCD là hình thoi nên AB // CD và AB = CD.
Lại có M, P lần lượt là trung điểm của AB, CD nên AM = MB = CP = PD và AM // CP.
Do đó tứ giác AMCP là hình bình hành.
Suy ra hai đường chéo AC và MP cắt nhau tại trung điểm của mỗi đường.
Lại có O là trung điểm của AC nên O cũng là trung điểm của MP.
Khi đó, đường tròn ngoại tiếp hình chữ nhật MNPQ có tâm là điểm O và bán kính là OM.
Xét ∆ABC có M, O lần lượt là trung điểm của AB, AC nên MO là đường trung bình của tam giác. Do đó
Vậy bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng 1,5 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa đường tròn như Hình 9.37. Tính chiều dài của đoạn thép làm khung nửa đường tròn đó.
Câu 2:
Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.
Câu 3:
Cho hình vuông ABCD có cạnh bằng 3 cm (H.9.34). Hãy xác định tâm, vẽ đường tròn ngoại tiếp hình vuông ABCD và cho biết bán kính của đường tròn đó.
Câu 4:
Cho hình thang ABCD (AB song song với CD) nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình thang cân.
Câu 5:
Tính diện tích của một hình chữ nhật, biết rằng hình chữ nhật đó có chiều dài gấp hai lần chiều rộng và bán kính đường tròn ngoại tiếp bằng 2,5 cm.
Câu 6:
Cho điểm I nằm ngoài đường tròn (O). Qua I kẻ hai đường thẳng lần lượt cắt (O) tại bốn điểm A, B và C, D sao cho A nằm giữa B và I, C nằm giữa D và I. Chứng minh rằng và IA . IB = IC . ID.
về câu hỏi!