Giải SGK Toán 9 KNTT Bài 29. Tứ giác nội tiếp có đáp án
46 người thi tuần này 4.6 570 lượt thi 22 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 3
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 2
Bộ 5 đề thi cuối kì 1 Toán 9 Chân trời sáng tạo (Tự luận) có đáp án - Đề 1
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 5
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 4
Bộ 5 đề thi cuối kì 1 Toán 9 Cánh diều (Tự luận) có đáp án - Đề 3
Danh sách câu hỏi:
Lời giải
Để trả lời được câu hỏi trên, chúng ta cùng tìm hiểu bài học này.
Lời giải
Xét ∆ABD vuông tại A, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BD và bán kính bằng nửa BD. Do đó ba điểm A, B, D cùng nằm trên đường tròn tâm O, đường kính BD.
Xét ∆BCD vuông tại C, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BD và bán kính bằng nửa BD. Do đó ba điểm B, C, D cùng nằm trên đường tròn tâm O, đường kính BD.
Vậy bốn đỉnh của tứ giác ABCD cùng nằm trên một đường tròn có tâm là trung điểm O của đoạn thẳng BD.
Lời giải

Ta có A, B, C, D cùng nằm trên đường tròn (O) nên OA = OB = OC = OD.
Vì OA = OB nên O nằm trên đường trung trực của AB.
Vì OB = OC nên O nằm trên đường trung trực của BC.
Vì OC = OD nên O nằm trên đường trung trực của CD.
Vì OD = OA nên O nằm trên đường trung trực của DA.
Vậy các đường trung trực của các cạnh AB, BC, CD, DA có đồng quy tại O.
Lời giải
Sử dụng thước đo góc ta đo được
và ![]()
Ta có ![]()
Chú ý: HS so sánh kết quả của mình với các bạn.
Lời giải

Vì BE, CF là hai đường cao của tam giác ABC nên BE ⊥ AC và CF ⊥ AB.
Xét ∆BCE vuông tại E, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, E cùng nằm trên đường tròn tâm O, đường kính BC.
Xét ∆BCF vuông tại F, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, F cùng nằm trên đường tròn tâm O, đường kính BC.
Do đó bốn điểm B, C, E, F cùng nằm trên đường tròn tâm O, đường kính BC.
Vậy tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.






