Câu hỏi:
12/07/2024 1,838
Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.
Cho hình bình hành ABCD nội tiếp đường tròn (O). Chứng minh rằng ABCD là hình chữ nhật.
Câu hỏi trong đề: Giải SGK Toán 9 KNTT Bài 29. Tứ giác nội tiếp có đáp án !!
Quảng cáo
Trả lời:
Vì hình bình hành ABCD nội tiếp đường tròn (O) nên các góc đối diện có tổng số đo bằng 180°. Do đó:
Vì ABCD là hình bình hành nên hai góc đối bằng nhau, do đó
Từ (1) và (2) suy ra
Hay do đó
Hình bình hành ABCD có nên là hình chữ nhật.
Vậy ABCD là hình chữ nhật.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
⦁ Xét ∆ABC có M, N lần lượt là trung điểm của AB, BC nên MN là đường trung bình của tam giác. Do đó MN // AC và
Chứng minh tương tự đối với ∆ACD, ta cũng có PQ // AC và
Từ (1) và (2) ta có MN // PQ và MN = PQ.
Do đó tứ giác MNPQ là hình bình hành.
Vì ABCD là hình thoi nên AC ⊥ BD. (3)
Xét ∆ABD có M, Q lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác. Do đó MQ // BD. (4)
Từ (1), (3) và (4) suy ra MN ⊥ MQ hay
Khi đó hình bình hành MNPQ là hình chữ nhật.
⦁ Vì MNPQ là hình chữ nhật nên đường tròn ngoại tiếp hình chữ nhật có tâm là giao điểm hai đường chéo MP và NQ.
Gọi O là giao điểm của AC và BD. Khi đó O là trung điểm của AC và BD.
Vì ABCD là hình thoi nên AB // CD và AB = CD.
Lại có M, P lần lượt là trung điểm của AB, CD nên AM = MB = CP = PD và AM // CP.
Do đó tứ giác AMCP là hình bình hành.
Suy ra hai đường chéo AC và MP cắt nhau tại trung điểm của mỗi đường.
Lại có O là trung điểm của AC nên O cũng là trung điểm của MP.
Khi đó, đường tròn ngoại tiếp hình chữ nhật MNPQ có tâm là điểm O và bán kính là OM.
Xét ∆ABC có M, O lần lượt là trung điểm của AB, AC nên MO là đường trung bình của tam giác. Do đó
Vậy bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng 1,5 cm.
Lời giải
Vì BE, CF là hai đường cao của tam giác ABC nên BE ⊥ AC và CF ⊥ AB.
Xét ∆BCE vuông tại E, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, E cùng nằm trên đường tròn tâm O, đường kính BC.
Xét ∆BCF vuông tại F, đường tròn ngoại tiếp tam giác có tâm là trung điểm O của BC và bán kính bằng nửa BC hay ba điểm B, C, F cùng nằm trên đường tròn tâm O, đường kính BC.
Do đó bốn điểm B, C, E, F cùng nằm trên đường tròn tâm O, đường kính BC.
Vậy tứ giác BCEF nội tiếp một đường tròn có tâm là trung điểm của cạnh BC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.