Câu hỏi:

12/07/2024 810

Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì ∆BEC vuông tại E (do BE AC) nên tam giác có đường tròn ngoại tiếp đường tròn đường kính BC. Do đó ba điểm B, E, C cùng nằm trên đường tròn đường kính BC.

Vì ∆BFC vuông tại F (do CF AB) nên tam giác có đường tròn ngoại tiếp là đường tròn đường kính BC. Do đó ba điểm B, F, C cùng nằm trên đường tròn đường kính BC.

Suy ra bốn điểm B, C, E, F cùng nằm trên một đường tròn hay tứ giác BCEF là tứ giác nội tiếp.

Chứng minh tương tự, ta cũng có tứ giác CAFD nội tiếp đường tròn đường kính AC và tứ giác ABDE nội tiếp đường tròn đường kính AB.

Vậy BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

¬ Gọi R là bán kính đường tròn ngoại tiếp hình vuông ABCD.

Khi đó ta có  

Xét ∆ABC vuông tại B (do ABCD là hình vuông), theo định lí Pythagore, ta có:

AC2 = AB2 + BC2 = 42 + 42 = 32.

Do đó

Suy ra

Chu vi của đường tròn ngoại tiếp hình vuông ABCD là:

Diện tích của đường tròn ngoại tiếp hình vuông ABCD là:

¬ Gọi r là bán kính đường tròn nội tiếp hình vuông ABCD.

Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.

Vì ABCD là hình vuông nên hai đường chéo AC, BD vuông góc với nhau tại trung điểm O của mỗi đường.

Xét ∆OAB vuông tại O có OM là đường trung tuyến ứng với cạnh huyền nên

Mặt khác, ∆OAB cân tại O (vì OA = OB) nên đường trung tuyến OM đồng thời là đường cao, do đó OM AB tại M.

Tương tự, ta có:

ON BC tại N, OP CD tại P, OQ AD tại Q.

 

Mà AB = BC = CD = DA (do ABCD là hình vuông)

Nên OM = ON = OP = OQ.

Vậy đường tròn (O; OM) là đường tròn nội tiếp hình vuông ABCD.

Khi đó ta có

Chu vi của đường tròn nội tiếp hình vuông ABCD là:

2πr = 2π.2 = 4π (cm).

Diện tích của đường tròn nội tiếp hình vuông ABCD là:

πr2 = π.22 = 4π (cm2).

Lời giải

Giả sử ABCDEG là khay bánh kẹo hình lục giác đều cạnh 10 cm, được chia thành 7 ngăn gồm một lúc giác đều nhỏ MNPQUT và 6 hình thang cân MNBA, NPCB, PQDC, QUED, UTGE, TMAG.

Gọi O là giao điểm của ba đường chéo chính AD, BE, CG của hình lục giác đều ABCDEG.

Hình lục giác đều MNPQUT chia thành 6 tam giác đều OMN, ONP, OPQ, OPU, OUT, OTM.

Ta dễ dàng chứng minh được các tam giác đều đó bằng nhau nên chúng có diện tích bằng nhau.

Khi đó, SMNPQUT = 6SOMN.

Kẻ OK AB, ta có K là trung điểm của AB nên AK = 5 cm.

Ta có MN // AB (do MNBA là hình thang cân) nên OK MN.

Gọi H là giao điểm của OK và AB, ta có OH MN và H là trung điểm của MN.

Gọi x (cm, 0 < x < 10) là độ dài cạnh của lục giác đều MNPQUT, ta có MN = x,

Vì ABCDEG là lục giác đều nên ∆OAB là tam giác đều, do đó

Xét ∆OAK vuông tại K, ta có:

Xét ∆OMH vuông tại H, ta có:

Suy ra

Diện tích của tam giác OMN là:

Diện tích của hình thang cân MNBA là:

Để diện tích lục giác đều MNPQNT bằng hai lần diện tích mỗi hình thang (chẳng hạn hình thang MNBA) thì: 6S1 = 2S2 hay 3S1 = S2.

Do đó

Suy ra 3x2 = 100 – x2

4x2 = 100

   x2 = 25

   x = 5 (do x > 5).

Vậy cạnh hình lục giác đều nhỏ bằng 5 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay