Câu hỏi:
12/07/2024 567Cho hình vuông ABCD có cạnh bằng 4 cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.
Sách mới 2k7: 30 đề đánh giá năng lực ĐHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
¬ Gọi R là bán kính đường tròn ngoại tiếp hình vuông ABCD.
Khi đó ta có
Xét ∆ABC vuông tại B (do ABCD là hình vuông), theo định lí Pythagore, ta có:
AC2 = AB2 + BC2 = 42 + 42 = 32.
Do đó
Suy ra
Chu vi của đường tròn ngoại tiếp hình vuông ABCD là:
Diện tích của đường tròn ngoại tiếp hình vuông ABCD là:
¬ Gọi r là bán kính đường tròn nội tiếp hình vuông ABCD.
Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA.
Vì ABCD là hình vuông nên hai đường chéo AC, BD vuông góc với nhau tại trung điểm O của mỗi đường.
Xét ∆OAB vuông tại O có OM là đường trung tuyến ứng với cạnh huyền nên
Mặt khác, ∆OAB cân tại O (vì OA = OB) nên đường trung tuyến OM đồng thời là đường cao, do đó OM ⊥ AB tại M.
Tương tự, ta có:
⦁ ON ⊥ BC tại N, OP ⊥ CD tại P, OQ ⊥ AD tại Q.
⦁
Mà AB = BC = CD = DA (do ABCD là hình vuông)
Nên OM = ON = OP = OQ.
Vậy đường tròn (O; OM) là đường tròn nội tiếp hình vuông ABCD.
Khi đó ta có
Chu vi của đường tròn nội tiếp hình vuông ABCD là:
2πr = 2π.2 = 4π (cm).
Diện tích của đường tròn nội tiếp hình vuông ABCD là:
πr2 = π.22 = 4π (cm2).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Người ta muốn làm một khay đựng bánh kẹo hình lục giác đều có cạnh 10 cm và chia thành 7 ngăn gồm một lục giác đều nhỏ và 6 hình thang cân như Hình 9.60. Hỏi lục giác đều nhỏ phải có cạnh bằng bao nhiêu để nó có diện tích bằng hai lần diện tích mỗi hình thang?
Câu 2:
Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.
Câu 3:
Cho tứ giác ABCD nội tiếp đường tròn (O), AB cắt CD tại E, AD cắt BC tại F như Hình 9.58. Biết và
tính số đo các góc của tứ giác ABCD.
Câu 4:
Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều quay của kim đồng hồ. Phép quay thuận chiều 45° biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.
Câu 5:
Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều quay của kim đồng hồ. Phép quay thuận chiều 45° biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.
Vẽ đa giác EAFBGCHD.
Câu 6:
Cho ngũ giác đều ABCDE nội tiếp đường tròn (O) như Hình 9.59.
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
23 câu Trắc nghiệm Toán 9 Bài 1: Căn thức bậc hai có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 02
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 03
về câu hỏi!