Câu hỏi:

28/06/2024 280

Người ta muốn làm một khay đựng bánh kẹo hình lục giác đều có cạnh 10 cm và chia thành 7 ngăn gồm một lục giác đều nhỏ và 6 hình thang cân như Hình 9.60. Hỏi lục giác đều nhỏ phải có cạnh bằng bao nhiêu để nó có diện tích bằng hai lần diện tích mỗi hình thang?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử ABCDEG là khay bánh kẹo hình lục giác đều cạnh 10 cm, được chia thành 7 ngăn gồm một lúc giác đều nhỏ MNPQUT và 6 hình thang cân MNBA, NPCB, PQDC, QUED, UTGE, TMAG.

Gọi O là giao điểm của ba đường chéo chính AD, BE, CG của hình lục giác đều ABCDEG.

Hình lục giác đều MNPQUT chia thành 6 tam giác đều OMN, ONP, OPQ, OPU, OUT, OTM.

Ta dễ dàng chứng minh được các tam giác đều đó bằng nhau nên chúng có diện tích bằng nhau.

Khi đó, SMNPQUT = 6SOMN.

Kẻ OK AB, ta có K là trung điểm của AB nên AK = 5 cm.

Ta có MN // AB (do MNBA là hình thang cân) nên OK MN.

Gọi H là giao điểm của OK và AB, ta có OH MN và H là trung điểm của MN.

Gọi x (cm, 0 < x < 10) là độ dài cạnh của lục giác đều MNPQUT, ta có MN = x,

Vì ABCDEG là lục giác đều nên ∆OAB là tam giác đều, do đó

Xét ∆OAK vuông tại K, ta có:

Xét ∆OMH vuông tại H, ta có:

Suy ra

Diện tích của tam giác OMN là:

Diện tích của hình thang cân MNBA là:

Để diện tích lục giác đều MNPQNT bằng hai lần diện tích mỗi hình thang (chẳng hạn hình thang MNBA) thì: 6S1 = 2S2 hay 3S1 = S2.

Do đó

Suy ra 3x2 = 100 – x2

4x2 = 100

   x2 = 25

   x = 5 (do x > 5).

Vậy cạnh hình lục giác đều nhỏ bằng 5 cm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có các đường cao AD, BE, CF. Chứng minh rằng BCEF, CAFD, ABDE là những tứ giác nội tiếp.

Xem đáp án » 12/07/2024 373

Câu 2:

Cho hình vuông ABCD có cạnh bằng 4 cm. Tính chu vi, diện tích của các đường tròn nội tiếp và ngoại tiếp hình vuông ABCD.

Xem đáp án » 12/07/2024 316

Câu 3:

Cho tứ giác ABCD nội tiếp đường tròn (O), AB cắt CD tại E, AD cắt BC tại F như Hình 9.58. Biết tính số đo các góc của tứ giác ABCD.

Xem đáp án » 12/07/2024 126

Câu 4:

Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều quay của kim đồng hồ. Phép quay thuận chiều 45° biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.

Vẽ đa giác EAFBGCHD.

Xem đáp án » 12/07/2024 77

Câu 5:

Cho ngũ giác đều ABCDE nội tiếp đường tròn (O) như Hình 9.59.

Hãy tìm một phép quay thuận chiều tâm O biến điểm A thành điểm C.

Xem đáp án » 12/07/2024 70

Câu 6:

Biết rằng bốn đỉnh A, B, C, D của một hình vuông cùng nằm trên một đường tròn (O) theo thứ tự ngược chiều quay của kim đồng hồ. Phép quay thuận chiều 45° biến các điểm A, B, C, D lần lượt thành các điểm E, F, G, H.

Đa giác EAFBGCHD có phải là một bát giác đều hay không? Vì sao?

Xem đáp án » 12/07/2024 69

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store