Câu hỏi:

12/07/2024 287 Lưu

Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì tam giác ABC nội tiếp đường tròn (O).

Mà M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB nên OM, ON, OP là ba đường trung trực của tam giác ABC.

Do đó OM BC, ON CA, OP AB.

Vì ∆OAN vuông tại N nên tam giác nội tiếp đường tròn có đường kính OA. Do đó O, A, N nằm trên đường tròn đường kính OA.

Vì ∆OAP vuông tại P nên tam giác nội tiếp đường tròn đường kính OA. Do đó O, A, P nằm trên đường tròn đường kính OA.

Suy ra bốn điểm A, N, O, P nằm trên đường tròn đường kính OA.

Vì vậy, tứ giác ANOP nội tiếp đường tròn đường kính OA.

Chứng minh tương tự, ta có BPOM nội tiếp đường tròn đường kính OB, CMON nội tiếp đường tròn đường kính OC.

Vậy ANOP, BPOM, CMON là các tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Các tam giác, hình chữ nhật, đa giác đều là các đa giác nội tiếp được một đường tròn.

Hình bình hành không là đa giác nội tiếp đường tròn.

Vậy ta chọn phương án C.

Lời giải

Xét ∆IAF có IA = IF (do A, F thuộc đường tròn tâm I đường kính AH) nên ∆IAF cân tại I, suy ra

Xét ∆BCF vuông tại F có FM là trung tuyến ứng với cạnh huyền BC nên

Xét ∆BMF có MB = MF nên ∆BMF cân tại M, suy ra

Kéo dài AH cắt BC tại D, khi đó AD là đường cao của tam giác ABC.

Xét ∆ABD vuông tại D, ta có:

(tổng hai góc nhọn trong tam giác vuông bằng 90°)

Do đó

Lại có

Suy ra

Hay MF IF, mà IF là bán kính đường tròn ngoại tiếp tứ giác AEHF.

Do đó MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Tương tự, ta cũng chứng minh được ME tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Vậy ME, MF tiếp xúc với đường tròn ngoại tiếp tứ giác AEHF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP