Câu hỏi:
12/07/2024 517
Giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−2; 0] bằng:
A. 40.
B. 8.
C. 33.
D. 35.
Giá trị nhỏ nhất của hàm số y = x3 – 3x2 – 9x + 35 trên đoạn [−2; 0] bằng:
A. 40.
B. 8.
C. 33.
D. 35.
Quảng cáo
Trả lời:
Đáp án đúng là: C
Tập xác định: D = ℝ.
Ta có: y = x3 – 3x2 – 9x + 35 ⇒ y' = 3x2 − 6x – 9.
y' = 0 ⇔ 3x2 – 6x – 9 = 0.
Khi đó, trên khoảng (−2; 0), y' = 0 khi x = −1.
y(−2) = 33, y(−1) = 40, y(0) = 35.
Vậy y = 33 khi x = −2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
y = x + cos2x trên đoạn .
Tập xác định: D = ℝ.
Ta có: y = x + cos2x ⇒ y' = 1 – sin2x.
y' = 0 ⇔ x = (k ∈ ℤ).
Xét trên khoảng , ta thấy không có giá trị nào của x để y' = 0.
Ta tính được: y(0) = 1, y =
+
.
Vậy y =
+
tại x =
,
y = 1 tại x = 0.
Lời giải
a) Đ |
b) Đ |
c) S |
d) Đ |
Thể tích của thùng chính bằng thể tích hình hộp nên V = x2. h (dm3).
Tổng diện tích xung quanh và diện tích 1 đáy của thùng (do thùng không nắp) là:
S = 4xh + x2 (dm2).
Theo đề, cái gò đựng đầy được 32 lít nước, tức là V = 32 (dm3).
⇒ x2. h = 32 ⇒ h = .
Khi đó S(x) = 4x. + x2 =
.
Ta có: S(x) = ⇒ S'(x) =
S'(x) = 0 ⇔ = 0 ⇔ x = 4.
Ta có bảng biến thiên như sau:
Vậy để làm được thùng mà tốn ít nguyên liệu nhất thì độ dài cạnh đáy của thùng là
4 dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.