Câu hỏi:
16/08/2024 1,511Một gia đình có bốn người lớn và ba trẻ em mua vé xem xiếc hết 370 000 đồng. Một gia đình khác có hai người lớn và hai trẻ em cũng mua vé xem xiếc tại rạp đó hết 200 000 đồng. Hỏi giá bán của mỗi loại vé cho người lớn và trẻ em là bao nhiêu? Biết rằng rạp đó bán hai hạng vé: người lớn và trẻ em, mỗi người vào xem phải mua một vé đúng hạng.
Câu hỏi trong đề: Giải SBT Toán 9 CTST BÀI TẬP CUỐI CHƯƠNG 1 !!
Quảng cáo
Trả lời:
Gọi x (đồng) là giá một vé người lớn, y (đồng) là giá một vé trẻ em (x > 0, y > 0).
Số tiền trả cho 4 vé người lớn là: 4x (đồng).
Số tiền trả cho 3 vé trẻ em là: 3y (đồng).
Một gia đình có bốn người lớn và ba trẻ em mua vé xem xiếc hết 370 000 đồng nên ta có phương trình: 4x + 3y = 370 000. (1)
Số tiền trả cho 2 vé người lớn là: 2x (đồng).
Số tiền trả cho 2 vé trẻ em là: 2y (đồng).
Một gia đình khác có hai người lớn và hai trẻ em cũng mua vé xem xiếc tại rạp đó hết 200000 đồng nên ta có phương trình 2x + 2y = 200 000. (2)
Từ (1) và (2) ta có hệ phương trình
Nhân hai vế của phương trình (2) với ‒2, ta được:
Cộng từng vế hai phương trình của hệ, ta có:
‒y = ‒30 000, do đó y = 30 000.
Thay y = 30 000 vào phương trình (1), ta được:
4x + 3.30 000 = 370 000, hay 4x + 90 000 = 370 000, do đó x = 70 000.
Ta thấy x = 70 000, y = 30 000 thoả mãn điều kiện.
Vậy giá một vé người lớn là 70 000 đồng, giá một vé trẻ em là 30 000 đồng.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x (bông) và y (bông) lần lượt là số bông hoa hồng và số bông hoa cẩm chướng người đó mua (x ∈ ℕ*, y ∈ ℕ*).
Do người đó mua 36 bông hoa hồng và hoa cẩm chướng nên ta có phương trình:
x + y = 36. (1)
Số tiền mua hoa hồng là: 5 500x (đồng).
Số tiền mua hoa cẩm chướng là: 4 000y (đồng).
Do mua hết tất cả 174 000 đồng nên ta có phương trình:
5 500x + 4 000y = 174 000 hay 11x + 8y = 348. (2)
Từ (1) và (2) ta có hệ phương trình
Nhân hai vế của phương trình (1) với 8, ta được
Trừ từng vế của phương trình thứ hai và phương trình thứ nhất, ta được:
3x = 60, suy ra x = 20.
Thay x = 20 vào phương trình (1), ta được:
20 + y = 36, do đó y = 16.
Ta thấy x = 20, y = 16 thoả mãn điều kiện.
Vậy người đó đã mua 20 bông hoa hồng và 16 bông hoa cẩm chướng.
Lời giải
Nhân hai vế của phương trình (2) với 2, ta được:
Cộng từng vế hai phương trình của hệ, ta được:
7x = 14, suy ra x = 2.
Thay x = 2 vào phương trình (2), ta được:
2.2 – y = 5, hay 4 – y = 5, do đó y = –1.
Vậy hệ phương trình đã cho có nghiệm duy nhất là (2; ‒1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
12 bài tập Một số bài toán thực tế liên quan đến bất đẳng thức có lời giải
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 2: Hình học)
12 bài tập Một số bài toán thực tế liên quan đến bất phương trình bậc nhất một ẩn có lời giải
Đề ôn thi vào 10 môn Toán có đáp án (Mới nhất)- Đề số 1