Tìm
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)dx} \);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}dx} \).
Tìm
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)dx} \);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}dx} \).
Quảng cáo
Trả lời:
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)dx} \) = \(\int {xdx + \int {{{\sin }^2}\frac{x}{2}dx} } \)
= \(\int {xdx + \int {\frac{{1 - \cos x}}{2}dx} } \)
= \(\int {xdx + \int {\frac{1}{2}dx - \int {\frac{{\cos x}}{2}dx} } } \)
= \(\frac{1}{2}{x^2} + \frac{1}{2}x - \frac{1}{2}\sin x + C\).
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}dx} \) = \(\int {\left( {4{{\tan }^2}x + 4\tan x\cot x + {{\cot }^2}x} \right)dx} \)
= \(\int {\left( {\frac{4}{{{{\cos }^2}x}} - 4 + 4 + \frac{1}{{{{\sin }^2}x}} - 1} \right)dx} \)
= \(\int {\frac{4}{{{{\cos }^2}xdx}} + \int {\frac{1}{{{{\sin }^2}x}}dx - \int {1dx} } } \)
= 4tanx – cotx – x + C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ cao h(t) của viên đạn tại điểm t là:
h(t) = \(\int {\left( {150 - 9,8t} \right)dt} \) = 150t – 9,8\(\frac{{{t^2}}}{2}\)+ C = 150t – 4,9t2 + C.
Thay t = 0 ta được h(0) = C = 0.
Vậy h(t) = 150t – 4,9t2 (m).
a) Sau t = 3 giây, độ cao của viên đạn là:
h = h(3) = 150.3 – 4,9.32 = 405,9 (m).
b) Ta có: h(t) = 150t – 4,9t2 (m).
h'(t) = v(t) = 150 – 9,8t
h'(t) = 0 ⇔ t = \(\frac{{150}}{{9,8}}\).
Ta có bảng xét dấu như sau:

Khi đó, viên đạn đạt độ cao lớn nhất tại thời điểm tmax = \(\frac{{150}}{{9,8}}\).
Như vậy hmax = 150tmax – 4,9\(t_{\max }^2\)≈ 1148,0 (m).
Lời giải
Ta có: f(x) = \(\int {f'\left( x \right)dx} \)
= \(\int {\left( {3\sqrt x + \frac{2}{{\sqrt[3]{x}}}} \right)} dx\)
= \(\int {3\sqrt x dx + \int {\frac{2}{{\sqrt[3]{x}}}} } dx\)
= 2x\(\sqrt x \) + 3\(\sqrt[3]{{{x^2}}}\) + C.
Mà f(1) = 1 nên 2 + 3 + C = 1 hay C = −4.
Vậy f(x) = 2x\(\sqrt x \) + 3\(\sqrt[3]{{{x^2}}}\) − 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.