Câu hỏi:

21/08/2024 835

Cho F(u) là một nguyên hàm của hàm số f(u) trên khoảng K và u(x), x J, là hàm số có đạo hàm liên tục, u(x) K với mọi x J. Tìm \(\int {f\left( {u(x)} \right).u'(x)dx} \).

Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \)\(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: F'(u) = f(u), với mọi u K.

\({\left[ {F\left( {u\left( x \right)} \right)} \right]^\prime }\) = \(F'\left( {u\left( x \right)} \right)\).u'(x) = \(f\left( {u\left( x \right)} \right).u'\left( x \right)\), với mọi x J.

Do đó, \(\int {f\left( {u(x)} \right).u'(x)dx} \) = \(F\left( {u\left( x \right)} \right)\) + C.

Áp dụng:

\(\int {{{\left( {2x + 1} \right)}^5}dx} \) = \({\int {\left( {2x + 1} \right)} ^5}\frac{{{{\left( {2x + 1} \right)}^\prime }}}{2}dx\)

                      = \(\frac{1}{2}\int {{{\left( {2x + 1} \right)}^5}{{\left( {2x + 1} \right)}^\prime }dx} \)

                      = \(\frac{1}{2}.\frac{{{{\left( {2x + 1} \right)}^6}}}{6} + C\)

                      = \(\frac{{{{\left( {2x + 1} \right)}^6}}}{{12}} + C\).

 \(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \) = \(\int {\frac{1}{{\sqrt {2x + 1} }}.\frac{{{{\left( {2x + 1} \right)}^\prime }}}{2}dx} \)

                       = \(\int {\frac{1}{{2\sqrt {2x + 1} }}.{{\left( {2x + 1} \right)}^\prime }dx} \)

                       = \(\sqrt {2x + 1} + C.\)        

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t = 0 là thời điểm viên đạn được bắn lên) cho bởi v(t) = 150 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau t = 3 giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Xem đáp án » 21/08/2024 15,347

Câu 2:

Tìm hàm số y = f(x), biết f'(x) = \(3\sqrt x + \frac{2}{{\sqrt[3]{x}}}\) (x > 0) và f(1) = 1.

Xem đáp án » 21/08/2024 3,898

Câu 3:

Tìm:

a) \(\int {\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}dx} \);

b) \(\int {\sqrt x \left( {7{x^2} + 6} \right)dx} \).

Xem đáp án » 21/08/2024 1,342

Câu 4:

Tìm:

a) \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx\);

b) \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}dx} \).

 

Xem đáp án » 21/08/2024 922

Câu 5:

Tìm:

a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)dx} \);

b) \(\int {\left( {3\sqrt x  - 4\sin x} \right)dx} \).

Xem đáp án » 21/08/2024 723

Câu 6:

Tìm

a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)dx} \);

b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}dx} \).

Xem đáp án » 21/08/2024 434
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua