Câu hỏi:

21/08/2024 15,348

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t = 0 là thời điểm viên đạn được bắn lên) cho bởi v(t) = 150 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau t = 3 giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Độ cao h(t) của viên đạn tại điểm t là:

h(t) = \(\int {\left( {150 - 9,8t} \right)dt} \) = 150t – 9,8\(\frac{{{t^2}}}{2}\)+ C = 150t – 4,9t2 + C.

Thay t = 0 ta được h(0) = C = 0.

Vậy h(t) = 150t – 4,9t2 (m).

a) Sau t = 3 giây, độ cao của viên đạn là:

h = h(3) = 150.3 – 4,9.32 = 405,9 (m).

b) Ta có: h(t) = 150t – 4,9t2 (m).

               h'(t) = v(t) = 150 – 9,8t

               h'(t) = 0 t = \(\frac{{150}}{{9,8}}\).

Ta có bảng xét dấu như sau:

Một viên đạn được bắn thẳng đứng lên trên từ mặt đất với vận tốc tại thời điểm t (t = 0 là thời điểm viên đạn được bắn lên) cho bởi v(t) = 150 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất): a) Sau t = 3 giây; b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất của mét). (ảnh 1)

Khi đó, viên đạn đạt độ cao lớn nhất tại thời điểm tmax = \(\frac{{150}}{{9,8}}\).

Như vậy hmax = 150tmax – 4,9\(t_{\max }^2\)≈ 1148,0 (m).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm hàm số y = f(x), biết f'(x) = \(3\sqrt x + \frac{2}{{\sqrt[3]{x}}}\) (x > 0) và f(1) = 1.

Xem đáp án » 21/08/2024 3,898

Câu 2:

Tìm:

a) \(\int {\frac{{{{\left( {x + 2} \right)}^2}}}{{{x^4}}}dx} \);

b) \(\int {\sqrt x \left( {7{x^2} + 6} \right)dx} \).

Xem đáp án » 21/08/2024 1,342

Câu 3:

Tìm:

a) \(\int {\left( {3x + 4} \right)\sqrt[3]{x}} dx\);

b) \(\int {\frac{{{{\left( {2x + 3} \right)}^2}}}{{\sqrt x }}dx} \).

 

Xem đáp án » 21/08/2024 922

Câu 4:

Cho F(u) là một nguyên hàm của hàm số f(u) trên khoảng K và u(x), x J, là hàm số có đạo hàm liên tục, u(x) K với mọi x J. Tìm \(\int {f\left( {u(x)} \right).u'(x)dx} \).

Áp dụng: Tìm \(\int {{{\left( {2x + 1} \right)}^5}dx} \)\(\int {\frac{1}{{\sqrt {2x + 1} }}dx} \).

Xem đáp án » 21/08/2024 836

Câu 5:

Tìm:

a) \(\int {\left( {2\cos x + \frac{3}{{\sqrt x }}} \right)dx} \);

b) \(\int {\left( {3\sqrt x  - 4\sin x} \right)dx} \).

Xem đáp án » 21/08/2024 723

Câu 6:

Tìm

a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)dx} \);

b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}dx} \).

Xem đáp án » 21/08/2024 434
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua