Câu hỏi:

22/08/2024 1,961 Lưu

Hàm cầu và hàm cung của một sản phẩm được mô hình hóa bởi:

Hàm cầu:  p = −0,2x + 8 và hàm cung: p = 0,1x + 2, trong đó x là số đơn vị sản phẩm, p là giá của mỗi đơn vị sản phẩm (tính bằng triệu đồng). Tìm thặng dư tiêu dùng và thặng dư sản xuất đối với sản phẩm này.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét phương trình −0,2x + 8 = 0,1x + 2 ⇔ x = 20, khi đó p = −0,2.20 + 8 = 4.

Thặng dư tiêu dùng là:

\(\int\limits_0^{20} {\left( { - 0,2x + 8 - 3} \right)} dx = \left. {\left( { - 0,1 + 4x} \right)} \right|_0^{20}\) = 40 (triệu đồng).

Thặng dư sản xuất là:

\(\int\limits_0^{20} {\left[ {4 - \left( {0,1x + 2} \right)} \right]dx = } \left. {\left( {2x - 0,1.\frac{{{x^2}}}{2}} \right)} \right|_0^{20}\) = 20 (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có hình sau:

Tính thể tích của vật thể ℬ, biết đáy của ℬ là hình tròn bán kính 2 và mặt cắt vuông góc với mặt đáy là những hình vuông (H.4.6). (ảnh 2)

Mỗi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (−2 ≤ x ≤ 2) cắt vật thể theo mặt cắt là hình vuông có độ dài cạnh là AB = 2BH = \(2\sqrt {4 - {x^2}} \).

Khi đó diện tích mặt cắt là 4(4 – x2).

Vậy thể tích của vật thể là: V = \(\int\limits_{ - 2}^2 {4\left( {4 - {x^2}} \right)} dx = \frac{{128}}{3}\).

Lời giải

a) Diện tích cần tính là:

S = \(\int\limits_0^5 {\left| {{x^2} - 4} \right|dx}  = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx}  + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} \)

                         = \(\int\limits_0^2 {\left( {4 - {x^2}} \right)dx}  + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)

                         = \(\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5\)

                         = 4.2 – \(\frac{8}{3}\) − 4.0 + \(\frac{0}{3}\) + \(\frac{{{5^3}}}{3}\) − 4.5 – \(\frac{8}{3}\) + 4.2 = \(\frac{{97}}{3}\).

b) Diện tích cần tính là:

S = \(\int\limits_0^2 {\left| { - {x^2} + 9 - \left( {2x + 1} \right)} \right|dx} \) = \(\int\limits_0^2 {\left| { - {x^2} - 2x + 8} \right|} dx\)

                                         = \(\int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} \)

                                         = \(\left. {\left( {\frac{{ - {x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2\) = \(\frac{{28}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP