Chi phí nhiên liệu dự kiến C (tính bằng triệu đô la mỗi năm) khi sử dụng một loại xe tải của một công ty vận tải từ năm 2020 đến năm 2030 là C1 = 5,6 + 2,2t, 0 ≤ t ≤ 10, trong đó t = 0 tương ứng với năm 2020. Nếu công ty sử dụng một loại xe tải khác có động cơ hiệu quả hơn thì chi phí nhiên liệu dự kiến sẽ giảm và tuân theo hàm mô hình C2 = 4,7 + 2,04t, 0 ≤ t ≤ 10. Công ty có thể tiết kiệm được bao nhiêu khi sử dụng lạo xe tải với động cơ hiệu quả hơn?
Chi phí nhiên liệu dự kiến C (tính bằng triệu đô la mỗi năm) khi sử dụng một loại xe tải của một công ty vận tải từ năm 2020 đến năm 2030 là C1 = 5,6 + 2,2t, 0 ≤ t ≤ 10, trong đó t = 0 tương ứng với năm 2020. Nếu công ty sử dụng một loại xe tải khác có động cơ hiệu quả hơn thì chi phí nhiên liệu dự kiến sẽ giảm và tuân theo hàm mô hình C2 = 4,7 + 2,04t, 0 ≤ t ≤ 10. Công ty có thể tiết kiệm được bao nhiêu khi sử dụng lạo xe tải với động cơ hiệu quả hơn?
Quảng cáo
Trả lời:
Tổng chi phí nhiên liệu khi công ty vận tải sử dụng xe tải loại thứ nhất trong 10 năm là:
S1 = \(\int\limits_0^{10} {{C_1}dt} = \int\limits_0^{10} {\left( {5,6 + 2,2t} \right)dt} = \left. {\left( {5,6t + 1,1{t^2}} \right)} \right|_0^{10}\) = 166 (triệu đô la).
Tổng chi phí nhiên liệu khi công ty vận tải sử dụng xe tải loại thứ hai trong 10 năm là:
S2 = \(\int\limits_0^{10} {{C_2}dt} = \int\limits_0^{10} {\left( {4,7 + 2,04t} \right)dt} = \left. {\left( {4,7t + 1,02{t^2}} \right)} \right|_0^{10}\) = 149 (triệu đô la).
Vậy khi sử dụng loại xe tải với động cơ hiệu quả hơn, công ty tiết kiệm được:
166 – 149 = 17 (triệu đô la).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có hình sau:
Mỗi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (−2 ≤ x ≤ 2) cắt vật thể theo mặt cắt là hình vuông có độ dài cạnh là AB = 2BH = \(2\sqrt {4 - {x^2}} \).
Khi đó diện tích mặt cắt là 4(4 – x2).
Vậy thể tích của vật thể là: V = \(\int\limits_{ - 2}^2 {4\left( {4 - {x^2}} \right)} dx = \frac{{128}}{3}\).
Lời giải
a) Diện tích cần tính là:
S = \(\int\limits_0^5 {\left| {{x^2} - 4} \right|dx} = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx} + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} \)
= \(\int\limits_0^2 {\left( {4 - {x^2}} \right)dx} + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)
= \(\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5\)
= 4.2 – \(\frac{8}{3}\) − 4.0 + \(\frac{0}{3}\) + \(\frac{{{5^3}}}{3}\) − 4.5 – \(\frac{8}{3}\) + 4.2 = \(\frac{{97}}{3}\).
b) Diện tích cần tính là:
S = \(\int\limits_0^2 {\left| { - {x^2} + 9 - \left( {2x + 1} \right)} \right|dx} \) = \(\int\limits_0^2 {\left| { - {x^2} - 2x + 8} \right|} dx\)
= \(\int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} \)
= \(\left. {\left( {\frac{{ - {x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2\) = \(\frac{{28}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


