Câu hỏi:

22/08/2024 2,015

Chi phí nhiên liệu dự kiến C (tính bằng triệu đô la mỗi năm) khi sử dụng một loại xe tải của một công ty vận tải từ năm 2020 đến năm 2030 là C1 = 5,6 + 2,2t, 0 ≤ t ≤ 10, trong đó t = 0 tương ứng với năm 2020. Nếu công ty sử dụng một loại xe tải khác có động cơ hiệu quả hơn thì chi phí nhiên liệu dự kiến sẽ giảm và tuân theo hàm mô hình C2 = 4,7 + 2,04t, 0 ≤ t ≤ 10. Công ty có thể tiết kiệm được bao nhiêu khi sử dụng lạo xe tải với động cơ hiệu quả hơn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tổng chi phí nhiên liệu khi công ty vận tải sử dụng xe tải loại thứ nhất trong 10 năm là:

S1 = \(\int\limits_0^{10} {{C_1}dt}  = \int\limits_0^{10} {\left( {5,6 + 2,2t} \right)dt}  = \left. {\left( {5,6t + 1,1{t^2}} \right)} \right|_0^{10}\) = 166 (triệu đô la).

Tổng chi phí nhiên liệu khi công ty vận tải sử dụng xe tải loại thứ hai trong 10 năm là:

S2 = \(\int\limits_0^{10} {{C_2}dt}  = \int\limits_0^{10} {\left( {4,7 + 2,04t} \right)dt}  = \left. {\left( {4,7t + 1,02{t^2}} \right)} \right|_0^{10}\) = 149 (triệu đô la).

Vậy khi sử dụng loại xe tải với động cơ hiệu quả hơn, công ty tiết kiệm được:

166 – 149 = 17 (triệu đô la).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có hình sau:

Tính thể tích của vật thể ℬ, biết đáy của ℬ là hình tròn bán kính 2 và mặt cắt vuông góc với mặt đáy là những hình vuông (H.4.6). (ảnh 2)

Mỗi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (−2 ≤ x ≤ 2) cắt vật thể theo mặt cắt là hình vuông có độ dài cạnh là AB = 2BH = \(2\sqrt {4 - {x^2}} \).

Khi đó diện tích mặt cắt là 4(4 – x2).

Vậy thể tích của vật thể là: V = \(\int\limits_{ - 2}^2 {4\left( {4 - {x^2}} \right)} dx = \frac{{128}}{3}\).

Lời giải

a) Diện tích cần tính là:

S = \(\int\limits_0^5 {\left| {{x^2} - 4} \right|dx}  = \int\limits_0^2 {\left| {{x^2} - 4} \right|dx}  + \int\limits_2^5 {\left| {{x^2} - 4} \right|dx} \)

                         = \(\int\limits_0^2 {\left( {4 - {x^2}} \right)dx}  + \int\limits_2^5 {\left( {{x^2} - 4} \right)dx} \)

                         = \(\left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_0^2 + \left. {\left( {\frac{{{x^3}}}{3} - 4x} \right)} \right|_2^5\)

                         = 4.2 – \(\frac{8}{3}\) − 4.0 + \(\frac{0}{3}\) + \(\frac{{{5^3}}}{3}\) − 4.5 – \(\frac{8}{3}\) + 4.2 = \(\frac{{97}}{3}\).

b) Diện tích cần tính là:

S = \(\int\limits_0^2 {\left| { - {x^2} + 9 - \left( {2x + 1} \right)} \right|dx} \) = \(\int\limits_0^2 {\left| { - {x^2} - 2x + 8} \right|} dx\)

                                         = \(\int\limits_0^2 {\left( { - {x^2} - 2x + 8} \right)dx} \)

                                         = \(\left. {\left( {\frac{{ - {x^3}}}{3} - {x^2} + 8x} \right)} \right|_0^2\) = \(\frac{{28}}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP