Câu hỏi:
22/08/2024 2,222Xét tính đơn điệu và tìm các cực trị (nếu có) của các hàm số sau:
a) \(y = x + \frac{1}{x}\);
b) \(y = \frac{x}{{{x^2} + 1}}.\)
Quảng cáo
Trả lời:
a) \(y = x + \frac{1}{x}\)
Tập xác định: D = ℝ\{0}.
Ta có: y' = 1 – \(\frac{1}{{{x^2}}}\) = \(\frac{{{x^2} - 1}}{{{x^2}}}\)
y' = 0 ⇔ \(\frac{{{x^2} - 1}}{{{x^2}}}\) = 0 ⇔ x = ±1.
Ta có bảng biến thiên:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−1; 0) và (0; 1).
Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đạt cực đại tại x = −1 và yCĐ = y(−1) = −2.
Hàm số đạt cực tiểu tại x = 1 và yCT = y(1) = 2.
b) \(y = \frac{x}{{{x^2} + 1}}.\)
Tập xác định: D = ℝ.
Ta có: y' = \(\frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}\) = 0 ⇔ 1 – x2 = 0 ⇔ x = ±1.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta có:
Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).
Hàm số đồng biến trên khoảng (−1; 1).
Hàm số đạt cực đại tại x = 1 và yCĐ = y(1) = \(\frac{1}{2}\).
Hàm số đạt cực tiểu tại x = −1 và yCT = y(−1) = \( - \frac{1}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có: \(\overline P (x) = \frac{{R(x) - C(x)}}{x} = \frac{{75,5x - 25,5x - 1000}}{x} = 50 - \frac{{1000}}{x}\) (triệu đồng).
Tập xác định của hàm lợi nhuận trung bình là: (0; +∞).
b) Với x = 100 thì \(\overline P (100) = 50 - \frac{{1000}}{{100}} = 40\) (triệu đồng).
Với x = 500 thì \(\overline P (500) = 50 - \frac{{1000}}{{500}} = 48\) (triệu đồng).
Với x = 1 000 thì \(\overline P (1000) = 50 - \frac{{1000}}{{1000}} = 49\) (triệu đồng).
c) Ta có: \(\overline P (x) = 50 - \frac{{1000}}{x}\)
\(\overline {P'} \left( x \right) = \frac{{1000}}{{{x^2}}}\)> 0 với mọi x ∈ (0; +∞).
Vậy hàm lợi nhuận trung bình đồng biến trên khoảng (0; +∞).
Mặt khác, \(\mathop {\lim }\limits_{x \to + \infty } \overline P (x) = \mathop {\lim }\limits_{x \to + \infty } \left( {50 - \frac{{1000}}{x}} \right) = 50.\)
Ta có bảng biến thiên như sau:
Như vậy, mặc dù lợi nhuận trung bình luôn tăng khi mức sản xuất tăng nhưng không vượt quá 50 triệu đồng.
Lời giải
a) Ta có: \(\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{4} = \frac{\pi }{2}.\)
Khi đó, vị trí của vật tại thời điểm t là x(t) = 0,24cos\(\frac{{\pi t}}{2}\) (m).
Suy ra vị trí của vật tại thời điểm t = 0,5 giây là x(0,5) = 0,24cos\(\frac{{0,5\pi }}{2}\) = \(0,12\sqrt 2 \) (m).
b) Vận tốc của vật là v(t) = x'(t) = −0,12sin\(\frac{{\pi t}}{2}\) (m/s).
Tại thời điểm t = 0,5 giây thì v(0,5) = −0,12sin\(\frac{{0,5\pi }}{2}\) = −0,06π\(\sqrt 2 \) (m/s).
Dấu âm của vận tốc chứng tỏ tại thời điểm này, vật đang chuyển động theo chiều ngược với chiều dương của trục đã chọn.
c) Gia tốc của vật là: a(t) = v'(t) = −0,06π2cos\(\frac{{\pi t}}{2}\) (m/s2).
d) Tại thời điểm t = 0,5 giây, ta có lực tác động lên vật là:
F(0,5) = m.a(0,5) = −0,06π2cos\(\frac{{0,5\pi }}{2}\) = −0,03π\(\sqrt 2 \) (N).
Vậy độ lớn của lực tác dụng lên vật là 0,03π\(\sqrt 2 \) N và lực có hướng ngược với chiều dương của trục đã chọn.
e) Vị trí của vật tại thời điểm ban đầu t = 0 là x(0) = 0,24 (m).
Ta có: x(t) = 0,24cos\(\frac{{\pi t}}{2}\) = −0,12 ⇔ cos\(\frac{{\pi t}}{2}\) = \( - \frac{1}{2}\)
Nghiệm t dương nhỏ nhất của phương trình trên là t = \(\frac{4}{3}\).
Vậy thời gian tối thiểu để vật chuyển động từ vị trí ban đầu đến vị trí x = −0,12 m là
t = \(\frac{4}{3}\) giây.
Khi đó, vận tốc của vật là \(v\left( {\frac{4}{3}} \right)\) = −0,12πsin\(\frac{{\pi \frac{4}{3}}}{2}\) = −0,06π\(\sqrt 3 \) (m/s).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)