Câu hỏi:
22/08/2024 1,751Ở 0℃, sự mất nhiệt H (tính bằng Lcal/m2h, ở đây Kcal là kilocalories và 1 Kcal = 1 000 calo) từ cơ thể của một người có thể được mô hình hóa bằng công thức
H = \(33\left( {10\sqrt v - v + 10,45} \right)\)
trong đó v là tốc độ gió (tính bằng m/s) (Theo sách Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).
a) Xét tính đơn điệu của hàm số H và giải thích ý nghĩa thực tiễn của kết quả nhận được.
b) Tìm tốc độ thay đổi khi H khi v = 2 m/s. giải thích ý nghĩa thực tiễn của kết quả này.
Quảng cáo
Trả lời:
a) Khảo sát đơn điệu của hàm số H
Ta có: H = \(33\left( {10\sqrt v - v + 10,45} \right)\)
H'(v) = 33\(\left( {\frac{5}{{\sqrt v }} - 1} \right)\), v > 0
H'(v) = 0 ⇔ v = 25.
Ta có bảng biến thiên của hàm số:
Ta có thể thấy mức nhiệt mất từ cơ thể tăng khi tốc độ gió tăng. Tuy nhiên, nó đạt tối đa tại mức gió là 25 m/s, sau đó giảm dần khi tốc độ gió tiếp tục tăng.
b) Ta có: H'(2) = 33\(\left( {\frac{5}{{\sqrt 2 }} - 1} \right)\) ≈ 83,673.
Điều này có nghĩa là mức nhiệt của cơ thể mất tiếp khi vận tốc gió tăng từ 2 m/s lên 3 m/s là khoảng 83,673 (Kcal/m2h).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: R'(x) = \(\frac{{5000}}{{1 + 5{e^{ - x}}}}\), x ≥ 0.
R''(x) = \(\frac{{ - 25000{e^{ - x}}{{\left( {1 + 5{e^{ - x}}} \right)}^2} + 25000{e^{ - x}}.2\left( {1 + 5{e^{ - x}}} \right).5{e^{ - x}}}}{{{{\left( {1 + 5{e^{ - x}}} \right)}^4}}}\)
R''(x) = 0 ⇔ x = ln5 ≈ 1,61.
Ta có bảng biến thiên như sau:
Từ bảng biến thiên, ta thấy tốc độ bán hàng đạt tối đa vào thời điểm năm thứ hai.
Lời giải
Gọi x (m) là cạnh đáy của chiếc hộp.
Khi đó, ta có chiều cao của chiếc hộp là \(\frac{{2000}}{{{x^2}}}\) (cm).
Suy ra, tổng diện tích bề mặt của chiếc hộp là:
S = 2x2 + 4x.\(\frac{{2000}}{{{x^2}}}\) = 2x2 + \(\frac{{8000}}{x}\), x > 0.
Ta có: S' = 4x – \(\frac{{8000}}{{{x^2}}}\) = \(\frac{{4{x^3} - 8000}}{{{x^2}}}\)
S' = 0 ⇔ x = 10\(\sqrt[3]{2}\).
Ta có bảng biến thiên:
Dễ thấy lượng vật liệu dùng để sản xuất là nhỏ nhất khi cạnh đáy của hộp là 10\(\sqrt[3]{2}\) (cm) và chiều cao của hộp là \(\frac{{20}}{{\sqrt[3]{4}}}\) cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận