Câu hỏi:
24/08/2024 3,953
Cho tứ giác ABCD nội tiếp đường tròn (O), AB cắt CD tại E, AD cắt BC tại F như sau đây. Biết \[\widehat {BEC} = 40^\circ \] và \(\widehat {DFC} = 20^\circ ,\) tính số đo các góc của tứ giác ABCD.
Cho tứ giác ABCD nội tiếp đường tròn (O), AB cắt CD tại E, AD cắt BC tại F như sau đây. Biết \[\widehat {BEC} = 40^\circ \] và \(\widehat {DFC} = 20^\circ ,\) tính số đo các góc của tứ giác ABCD.
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Luyện tập chung trang 90 có đáp án !!
Quảng cáo
Trả lời:

Tổng các góc trong tam giác ADE bằng 180° nên:
\[\widehat A + \widehat D = 180^\circ - \widehat E = 180^\circ - 40^\circ = 140^\circ .\]
Do vậy \(\frac{1}{2}\left( {\widehat {BOC} + \widehat {COD}} \right) + \frac{1}{2}\left( {\widehat {AOB} + \widehat {BOC}} \right) = 140^\circ .\)
Suy ra \[\frac{1}{2}\left( {360^\circ + \widehat {BOC} - \widehat {DOA}} \right) = 140^\circ ,\] hay \(\widehat {DOA} - \widehat {BOC} = 80^\circ .\) (1)
Tổng các góc trong tam giác ABF bằng 180° nên:
\(\widehat A + \widehat B = 180^\circ - \widehat F = 180^\circ - 20^\circ = 160^\circ .\)
Do vậy \(\frac{1}{2}\left( {\widehat {BOC} + \widehat {COD}} \right) + \frac{1}{2}\left( {\widehat {COD} + \widehat {DOA}} \right) = 160^\circ .\)
Suy ra \(\frac{1}{2}\left( {360^\circ + \widehat {COD} - \widehat {AOB}} \right) = 160^\circ ,\) hay \(\widehat {AOB} - \widehat {COD} = 40^\circ .\) (2)
Cộng vế với vế của (1) và (2), ta được:
\(\widehat {AOB} + \widehat {DOA} - \widehat {COD} - \widehat {BOC} = 80^\circ + 40^\circ = 120^\circ ,\) hay
Chú ý rằng
Suy ra
Trừ vế với vế của (1) cho (2), ta được:
\[\widehat {DOA} + \widehat {COD} - \widehat {AOB} - \widehat {BOC} = 80^\circ - 40^\circ = 40^\circ ,\] hay
Chú ý rằng
Suy ra
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nếu chia đôi lục giác đều nhỏ bởi một đường kính thì ta sẽ được hai hình thang cân nhỏ bằng nhau và bằng với các hình thang cân trước đó.
Do vậy đường kính của lục giác đều nhỏ phải bằng cạnh của lục giác đều lớn, tức là bằng 10 cm.
Vì vậy, cạnh của lục giác đều nhỏ bằng \(\frac{1}{2}.10 = 5\) (cm).
Lời giải
a) Ta thấy \(\widehat {AOC} = \frac{2}{5}.360^\circ = 144^\circ .\)
Vậy phép quay thuận chiều 144° tâm O biến điểm A thành điểm C.
b) Phép quay trên lần lượt biến B, C, D, E thành D, E, A, B.
Như vậy phép quay này biến các đỉnh của ngũ giác đều ABCDE thành các đỉnh khác trên chính ngũ giác đều đó.
Do vậy phép quay này có giữ nguyên ngũ giác đều ABCDE.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.