Câu hỏi:
24/08/2024 4,679
Cho ngũ giác đều ABCDE nội tiếp đường tròn (O) như hình bên.
a) Hãy tìm một phép quay thuận chiều tâm O biến điểm A thành điểm C.
b) Phép quay trên sẽ biến các điểm B, C, D, E lần lượt thành những điểm nào? Phép quay này có giữ nguyên ngũ giác đều ABCDE không?
Cho ngũ giác đều ABCDE nội tiếp đường tròn (O) như hình bên.

a) Hãy tìm một phép quay thuận chiều tâm O biến điểm A thành điểm C.
b) Phép quay trên sẽ biến các điểm B, C, D, E lần lượt thành những điểm nào? Phép quay này có giữ nguyên ngũ giác đều ABCDE không?
Câu hỏi trong đề: Giải VTH Toán 9 KNTT Luyện tập chung trang 90 có đáp án !!
Quảng cáo
Trả lời:
a) Ta thấy \(\widehat {AOC} = \frac{2}{5}.360^\circ = 144^\circ .\)
Vậy phép quay thuận chiều 144° tâm O biến điểm A thành điểm C.
b) Phép quay trên lần lượt biến B, C, D, E thành D, E, A, B.
Như vậy phép quay này biến các đỉnh của ngũ giác đều ABCDE thành các đỉnh khác trên chính ngũ giác đều đó.
Do vậy phép quay này có giữ nguyên ngũ giác đều ABCDE.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nếu chia đôi lục giác đều nhỏ bởi một đường kính thì ta sẽ được hai hình thang cân nhỏ bằng nhau và bằng với các hình thang cân trước đó.
Do vậy đường kính của lục giác đều nhỏ phải bằng cạnh của lục giác đều lớn, tức là bằng 10 cm.
Vì vậy, cạnh của lục giác đều nhỏ bằng \(\frac{1}{2}.10 = 5\) (cm).
Lời giải

Lấy M là trung điểm của BC. Do BCE, BCF là các tam giác vuông có chung cạnh huyền BC nên ME = MB = MC = MF. Do đó đường tròn (M, MB) ngoại tiếp tứ giác BCEF.
Tương tự, CAFD và ABDE cũng là các tứ giác nội tiếp.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.