Câu hỏi:

25/08/2024 1,751

Cho hàm số y = kx2 (k ≠ 0) có đồ thị là một parabol với đỉnh O như Hình 3.

a) Tìm giá trị của k.

b) Tìm tung độ của điểm thuộc parabol có hoành độ bằng 2.

c) Tìm các điểm thuộc parabol có tung độ bằng 2.

d*) Tìm các điểm (không phải điểm O) thuộc parabol sao cho khoảng cách từ điểm đó đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung.

Cho hàm số y = kx^2 (k ≠ 0) có đồ thị là một parabol với đỉnh O như Hình 3.  a) Tìm giá trị của k.  b) Tìm tung độ của điểm thuộc parabol có hoành độ bằng 2. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Do đồ thị hàm số đi qua A(3; 3) nên 3 = k.32, suy ra \(k = \frac{1}{3}.\)

Vậy hàm số có dạng \[y = \frac{1}{3}{x^2}.\]

b) Do tung độ của điểm thuộc parabol có hoành độ bằng 2 nên x = 2.

Thay x = 2 vào hàm số \[y = \frac{1}{3}{x^2}\] ta được: \(\frac{1}{3} \cdot {2^2} = \frac{4}{3}.\)

Vậy tung độ của điểm thuộc parabol có hoành độ bằng 2 là y = 2.

c) Do điểm có tung độ bằng 2 nên y = 2.

Thay y = 2 vào hàm số \[y = \frac{1}{3}{x^2}\] ta được:

\(\frac{1}{3} \cdot {x^2} = 2,\) suy ra x2 = 6, nên \(x = \sqrt 6 \) hoặc \(x = - \sqrt 6 .\)

Vậy các điểm thuộc parabol có tung độ bằng 2 là \(\left( {\sqrt 6 ;2} \right)\)\(\left( { - \sqrt 6 ;2} \right).\)

d*) Gọi M(a; b) là điểm thuộc parabol thỏa mãn khoảng cách từ điểm đó đến trục hoành gấp ba lần khoảng cách từ điểm đó đến trục tung.

Từ đó, ta có: \(\frac{1}{3}{a^2} = b\,\,\left( * \right)\) và |b|=3.|a|.

Do |b| = 3.|a| nên b = 3a hoặc b = –3a.

– Nếu b = 3a, kết hợp với (*) ta có: \(\frac{1}{3} \cdot {a^2} = 3a\) hay a2 = 9a.

Suy ra a(a 9) = 0. Tức là a = 0 hoặc a = 9.

Với a = 0 thì b = 0, khi đó M(0; 0) (loại vì đây là điểm O).

Với a = 9 thì b = 27, khi đó M(9; 27).

– Nếu b = –3a, kết hợp với (*) ta có: \(\frac{1}{3} \cdot {a^2} = - 3a\) hay a2 = –9a.

Suy ra a(a + 9) = 0. Tức là a = 0 hoặc a = –9.

Với a = 0 thì b = 0, khi đó M(0; 0) (loại vì đây là điểm O).

Với a = –9 thì b = 27, khi đó M(–9; 27).

Vậy các điểm phải tìm là M(9; 27) và M’(–9; 27).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ Hình 5, ta có K(0; –4,5).

Gọi hoành độ của điểm B là b (b > 0).

Do tung độ của điểm B bằng tung độ của K nên B(b; –4,5).

Mặt khác, B thuộc parabol \(y = - \frac{1}{8}{x^2}\) nên ta có:

\( - 4,5 = - \frac{1}{8}{b^2}\) hay b2 = 36, nên b = 6 (do b > 0).

Từ đó KB = 6 m và AB = 2.KB = 2.6 = 12 m.

Vậy khoảng cách giữa hai chân cổng A và B ở trên mặt đất bằng 12 mét.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay