Câu hỏi:

25/08/2024 5,779

Nước từ một vòi nước (đặt trên mặt nước) được phun lên cao sẽ đạt đến một độ cao nào đó rồi rơi xuống (Hình 4). Giả sử nước được phun ra bắt đầu từ vị trí A trên mặt nước và rơi trở lại mặt nước ở vị trí B, đường đi của nước có dạng một phần của parabol \(y =  - \frac{1}{4}{x^2}\) trong hệ trục toạ độ Oxy, với gốc tọa độ O là vị trí cao nhất mà nước được phun ra đạt được so với mặt nước, trục Ox song song với AB, x và y được tính theo đơn vị mét. Tính chiều cao h từ điểm O đến mặt nước, biết khoảng cách giữa điểm A và điểm B là 6 m.

Nước từ một vòi nước (đặt trên mặt nước) được phun lên cao sẽ đạt đến một độ cao nào đó rồi rơi xuống (Hình 4). Giả sử nước được phun ra bắt đầu từ vị trí A trên mặt nước và rơi trở lại mặt nước ở vị trí B (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Nước từ một vòi nước (đặt trên mặt nước) được phun lên cao sẽ đạt đến một độ cao nào đó rồi rơi xuống (Hình 4). Giả sử nước được phun ra bắt đầu từ vị trí A trên mặt nước và rơi trở lại mặt nước ở vị trí B (ảnh 2)

Gọi I là trung điểm của đoạn AB. Khi đó OI = h và \(AI = IB = \frac{{AB}}{2} = \frac{6}{2} = 3\,\,\left( {\rm{m}} \right).\)

Từ đó, trong hệ trục Oxy, hoành độ của B bằng 3, tung độ của B bằng –h.

Do đó: \( - h = - \frac{1}{4} \cdot {3^2}\) hay \( - h = \frac{{ - 9}}{4},\) suy ra \(h = \frac{9}{4} = 2,25\,\,\left( {\rm{m}} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ Hình 5, ta có K(0; –4,5).

Gọi hoành độ của điểm B là b (b > 0).

Do tung độ của điểm B bằng tung độ của K nên B(b; –4,5).

Mặt khác, B thuộc parabol \(y = - \frac{1}{8}{x^2}\) nên ta có:

\( - 4,5 = - \frac{1}{8}{b^2}\) hay b2 = 36, nên b = 6 (do b > 0).

Từ đó KB = 6 m và AB = 2.KB = 2.6 = 12 m.

Vậy khoảng cách giữa hai chân cổng A và B ở trên mặt đất bằng 12 mét.

Lời giải

Với t = 3, y = 2,25 ta có: 2,25 = a.32 nên a = 0,25.

Với a = 0,25 ta có: y = 0,25t2. (1)

Thay y = 6,25 vào (1) ta được: 6,25 = 0,25t2. (2)

Từ (2) và t > 0, ta có t = 5.

Vậy khi viên bi lăn được 6,25 m thì nó đã lăn trong 5 giây.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP