Tìm phát biểu sai trong các phát biểu sau:
a) Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.
b) Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc bất kì bằng 180°.
c) Hình chữ nhật luôn nội tiếp đường tròn.
d) Mỗi hình vuông là một tứ giác nội tiếp đường tròn.
Tìm phát biểu sai trong các phát biểu sau:
a) Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.
b) Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc bất kì bằng 180°.
c) Hình chữ nhật luôn nội tiếp đường tròn.
d) Mỗi hình vuông là một tứ giác nội tiếp đường tròn.
Quảng cáo
Trả lời:
⦁ Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.
⦁ Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc đối nhau bằng 180°.
⦁ Hình chữ nhật luôn nội tiếp đường tròn.
⦁ Mỗi hình vuông là một tứ giác nội tiếp đường tròn.
Vậy trong các phát biểu đã cho, phát biểu b) là sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.
Do đó ta có:
a) ⦁ Ta có: và
Suy ra hay nên .
Do đó .
⦁ Ta có và
Suy ra hay nên .
Do đó .
Vậy .
b) Từ và ta có và
• Ta có và
Suy ra hay nên .
Do đó .
• Ta có và
Suy ra hay nên
Do đó .
Vậy .
c) Từ và ta có
Hay nên .
Ta có:
• .
• suy ra
• suy ra .
Vậy .
d) Từ ta có
Mà nên
Hay suy ra
Ta có:
•
• suy ra
• suy ra
Vậy .
Lời giải

⦁ Vì ∆ABC đều nên .
Do tứ giác ABEC nội tiếp đường tròn nên tổng hai góc đối nhau bằng 180°, suy ra
Mà (hai góc kề bù)
Do đó
Xét đường tròn (O) có (hai góc nội tiếp cùng chắn cung AC) nên .
Do đó, EC là đường phân giác của góc AED.
⦁ Tương tự ta có và .
Do đó hay EA là đường phân giác của góc BEC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
