Câu hỏi:

13/09/2024 2,338 Lưu

Cho tam giác ABC cân ở A, H là trung điểm của BC và  Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:

a) AH = EH;

b) DCE^=ABD^.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho tam giác ABC cân ở A, H là trung điểm của BC và  Đường vuông góc với AB tại A cắt đường thẳng (ảnh 1)

a) Do tam giác ABC cân tại A có AH là trung tuyến của tam giác nên đồng thời là đường cao của tam giác và đường phân giác của góc BAC, nên BAH^=HAC^ (1)

Do ∆AHD vuông tại H nên H thuộc đường tròn đường kính AD.

Do ∆AED vuông tại E nên E thuộc đường tròn đường kính AD.

Do đó tứ giác AHED nội tiếp đường tròn đường kính AD, suy ra ADH^=AEH^ (2) (hai góc nội tiếp cùng chắn cung AH).

Mặt khác ADH^=BAH^ (3) (vì cùng phụ với HAD^)

Từ (1), (2) và (3) suy ra HAC^=AEH^.

Do đó, tam giác HAE cân tại H nên AH = EH.

b) Xét ∆AHB và ∆AHC có:

AB = AC (do ∆ABC cân tại A);

HB = HC (do H là trung điểm của BC);

AH là cạnh chung

Do đó ∆AHB = ∆AHC (c.c.c)

Suy ra ABH^=ACH^ (hai góc tương ứng).

ACH^=DCE^ nên DCE^=ABD^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác ABCD nội tiếp đường tròn. Tính số đo mỗi góc còn lại của tứ giác đó trong mỗi trường (ảnh 1)

tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.

Do đó ta có: A^+C^=180°, B^+D^=180°

a) Ta có: A^+C^=180°  A^=3C^

Suy ra 3C^+C^=180° hay 4C^=180° nên C^=45°.

Do đó A^=3C^=3·45°=135°.

Ta có B^+D^=180° và B^=5D^

Suy ra 5D^+D^=180° hay 6D^=180° nên D^=30°.

Do đó B^=5D^=5·30°=150°.

Vậy A^=135°, B^=150°, C^=45°,D^=30°.

b) Từ A^-C^=12° D^-B^=76° ta có A^=C^+12° và D^=B^+76°

Ta có A^+C^=180° A^=C^+12°

Suy ra C^+12°+C^=180° hay 2C^=168° nên C^=84°.

Do đó A^=C^+12°=84°+12°=96°.

Ta có B^+D^=180° và D^=B^+76°

Suy ra B^+B^+76°=180° hay 2B^=104° nên B^=52°

Do đó D^=B^+76°=52°+76°=128°.

Vậy A^=96°,B=52°,C^=84°,D^=128°.

c) Từ A^=7B^ A^+2B^=180° ta có 7B^+2B^=180°

Hay 9B^=180° nên B^=20°.

Ta có:

• A^=7B^=7·20°=140°.

A^+C^=180° suy ra C^=180°-A^=180°-140°=40°;

B^+D^=180° suy ra D^=180°-B^=180°-20°=160°.

Vậy A^=140°, B^=20°, C^=40°, D^=160°.

d) Từ D^-C^=20° ta có D^=C^+20°

D^+C^=100° nên C^+20°+C^=100°

Hay 2C^=80° suy ra C^=40°

Ta có:

• D^=C^+20°=40°+20°=60°;

A^+C^=180° suy ra A^=180°-C^=180°-40°=140°

B^+D^=180° suy ra B^=180°-D^=180°-60°=120°

Vậy A^=140°, B^=120°, C^=40°, D^=60°.

Lời giải

Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là (ảnh 1)

Vì ∆ABC đều nên BAC^=ABC^=ACB^=60°.

Do tứ giác ABEC nội tiếp đường tròn nên tổng hai góc đối nhau bằng 180°, suy ra CEB^+BAC^=180°

CEB^+CED^=180° (hai góc kề bù)

Do đó CED^=BAD^=60°=180°-BEC^

Xét đường tròn (O) có AEC^=ABC^=60° (hai góc nội tiếp cùng chắn cung AC) nên AEC^=CED^=60°.

Do đó, EC là đường phân giác của góc AED.

Tương tự ta có AEC^=ABC^=60° và AEB^=ACB^=60°.

Do đó AEB^=AEC^=60° hay EA là đường phân giác của góc BEC.

Câu 4

Cho xAy^=60° và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; kẻ đường thẳng BM vuông góc với Ax cắt Ay tại K (Hình 14).

Cho ^xAy và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; (ảnh 1)

Chứng minh:

a) Các tứ giác AMBN, HMNK là các tứ giác nội tiếp đường tròn;

b) HK = 2MN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP