Câu hỏi:

13/09/2024 2,268

Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB, AD lần lượt tại E và F. Tia CM cắt đường thẳng AD tại N. Chứng minh rằng:

a) NCA^=MFN^ và NEA^=NCA^ ;

b) CM + CN = EF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB  (ảnh 1)

a) Gọi I là trung điểm của MF.

Xét ∆CMF vuông tại C nên điểm C nằm trên đường tròn đường kính MF.

Do ABCD là hình vuông nên ∆MAF vuông tại A, do đó điểm A nằm trên đường tròn đường kính MF.

Khi đó, bốn điểm A, M, C, F cùng nằm trên đường tròn đường kính MF, do đó tứ giác AMCF nội tiếp đường tròn đường kính MF.

Suy ra  (hai góc nội tiếp cùng chắn cung MA) hay NCA^=MFN^.

Tương tự, ta chứng minh được tứ giác NACE nội tiếp đường tròn đường kính NE, nên NEA^=NCA^ (hai góc nội tiếp cùng chắn cung NA).

b) Do ABCD là hình vuông nên AC là đường phân giác của BAD^, do đó BAC^=CAD^=12BAD^=12·90°=45° hay EAC^=45°

Ta có tứ giác NACE nội tiếp đường tròn nên  (hai góc nội tiếp cùng chắn cung EC).

NEC^=90° nên tam giác CEN vuông cân tại C.

Vì thế CN = CE.

Tương tự, tam giác CMF vuông cân tại C suy ra CM = CF.

Do đó CM + CN = CF + CE = EF.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD nội tiếp đường tròn. Tính số đo mỗi góc còn lại của tứ giác đó trong mỗi trường hợp sau:

a)  A^=3C^ và B^=5D^;

b) A^-C^=12° và D^-B^=76°;

c) A^=7B^ và A^+2B^=180°;

d) D^-C^=20° và D^+C^=100°.

Xem đáp án » 13/09/2024 3,238

Câu 2:

Cho xAy^=60° và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; kẻ đường thẳng BM vuông góc với Ax cắt Ay tại K (Hình 14).

Cho ^xAy và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; (ảnh 1)

Chứng minh:

a) Các tứ giác AMBN, HMNK là các tứ giác nội tiếp đường tròn;

b) HK = 2MN.

Xem đáp án » 13/09/2024 2,789

Câu 3:

Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.

Xem đáp án » 13/09/2024 2,596

Câu 4:

Tìm phát biểu sai trong các phát biểu sau:

a) Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.

b) Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc bất kì bằng 180°.

c) Hình chữ nhật luôn nội tiếp đường tròn.

d) Mỗi hình vuông là một tứ giác nội tiếp đường tròn.

Xem đáp án » 13/09/2024 2,370

Câu 5:

Cho tam giác ABC cân ở A, H là trung điểm của BC và  Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:

a) AH = EH;

b) DCE^=ABD^.

Xem đáp án » 13/09/2024 2,003

Câu 6:

Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC. Gọi I là giao điểm của EB và AC. Kẻ IK vuông góc với AB. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì EK luôn đi qua một điểm cố định.

Xem đáp án » 13/09/2024 1,745
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay