Câu hỏi:
13/09/2024 1,363Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC. Gọi I là giao điểm của EB và AC. Kẻ IK vuông góc với AB. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì EK luôn đi qua một điểm cố định.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Kẻ đường kính CD, khi đó ta có điểm D cố định.
Ta có ^AEB=90° (góc nội tiếp chắn nửa đường tròn (O) đường kính AB) và ^AKI=90° (do IK ⊥ AB) nên hai điểm E, K cùng thuộc đường tròn đường kính AI.
Do đó tứ giác EIKA nội tiếp đường tròn đường kính AI.
Suy ra ^KAI=^KEI (hai góc nội tiếp cùng chắn cung KI).
Lại có ^KAI=45° (do ∆ACB vuông cân tại C) do đó ^KEI=45° hay ^KEB=45°. (1)
Mặt khác, ∆ABC vuông cân tại C có CO là đường trung tuyến nên đồng thời là đường cao, đường phân giác của tam giác.
Do đó ^DCA=^DCB=12^ACB=12·90°=45°.
Mà là hai góc nội tiếp cùng chắn cung BD của đường tròn (O) nên ^DEB=^DCB=45°. (2)
Từ (1) và (2) suy ra E, K, D thẳng hàng.
Vậy khi điểm E di chuyển trên cung nhỏ AC thì EK luôn đi qua điểm D cố định.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ giác ABCD nội tiếp đường tròn. Tính số đo mỗi góc còn lại của tứ giác đó trong mỗi trường hợp sau:
a) ˆA=3ˆC và ˆB=5ˆD;
b) ˆA-ˆC=12° và ˆD-ˆB=76°;
c) ˆA=7ˆB và ˆA+2ˆB=180°;
d) ˆD-ˆC=20° và ˆD+ˆC=100°.
Câu 2:
Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.
Câu 4:
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB, AD lần lượt tại E và F. Tia CM cắt đường thẳng AD tại N. Chứng minh rằng:
a) ^NCA=^MFN và ^NEA=^NCA ;
b) CM + CN = EF.
Câu 5:
Tìm phát biểu sai trong các phát biểu sau:
a) Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.
b) Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc bất kì bằng 180°.
c) Hình chữ nhật luôn nội tiếp đường tròn.
d) Mỗi hình vuông là một tứ giác nội tiếp đường tròn.
Câu 6:
Cho tam giác ABC cân ở A, H là trung điểm của BC và Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:
a) AH = EH;
b) ^DCE=^ABD.
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 01
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 03
Bộ 5 đề thi giữa kì 2 Toán 9 Kết nối tri thức có đáp án - Đề 02
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận