Kết nối tri thức
Cánh diều
Chân trời sáng tạo
Chương trình khác
Môn học
68 lượt thi câu hỏi
99 lượt thi
Thi ngay
75 lượt thi
115 lượt thi
85 lượt thi
66 lượt thi
Câu 1:
Tìm phát biểu sai trong các phát biểu sau:
a) Tứ giác có bốn đỉnh thuộc một đường tròn được gọi là tứ giác nội tiếp đường tròn.
b) Trong một tứ giác nội tiếp đường tròn, tổng số đo hai góc bất kì bằng 180°.
c) Hình chữ nhật luôn nội tiếp đường tròn.
d) Mỗi hình vuông là một tứ giác nội tiếp đường tròn.
Cho tứ giác ABCD nội tiếp đường tròn. Tính số đo mỗi góc còn lại của tứ giác đó trong mỗi trường hợp sau:
a) A^=3C^ và B^=5D^;
b) A^-C^=12° và D^-B^=76°;
c) A^=7B^ và A^+2B^=180°;
d) D^-C^=20° và D^+C^=100°.
Câu 2:
Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Câu 3:
Ở Hình 13, hai đường tròn (O), (O’) giao nhau tại A, B và CD là một dây cung của (O). Tia CA cắt ( O’) tại E và tia DB cắt (O’) tại F. Chứng minh EF song song với CD.
Câu 4:
Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.
Câu 5:
Cho tam giác ABC cân ở A, H là trung điểm của BC và Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:
a) AH = EH;
b) DCE^=ABD^.
Câu 6:
Cho xAy^=60° và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; kẻ đường thẳng BM vuông góc với Ax cắt Ay tại K (Hình 14).
Chứng minh:
a) Các tứ giác AMBN, HMNK là các tứ giác nội tiếp đường tròn;
b) HK = 2MN.
Câu 7:
Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB, AD lần lượt tại E và F. Tia CM cắt đường thẳng AD tại N. Chứng minh rằng:
a) NCA^=MFN^ và NEA^=NCA^ ;
b) CM + CN = EF.
Câu 8:
Chứng minh rằng mỗi hình thang cân là một tứ giác nội tiếp đường tròn.
Câu 9:
Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).
a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.
b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Câu 10:
Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC. Gọi I là giao điểm của EB và AC. Kẻ IK vuông góc với AB. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì EK luôn đi qua một điểm cố định.
14 Đánh giá
50%
40%
0%
Hoặc
Bạn đã có tài khoản? Đăng nhập ngay
Bằng cách đăng ký, bạn đã đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
-- hoặc --
Bạn chưa có tài khoản? Đăng ký tại đây
Đăng nhập để bắt đầu sử dụng dịch vụ của chúng tôi.
Bạn chưa có tài khoản? Đăng ký
Bằng cách đăng ký, bạn đồng ý với Điều khoản sử dụng và Chính sách Bảo mật của chúng tôi.
084 283 45 85
vietjackteam@gmail.com