Câu hỏi:

13/09/2024 1,598 Lưu

Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).

Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH (ảnh 1)

Chứng minh:

a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.

b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Do ABCD là hình vuông nên AB = BC = CD = DA và A^=B^=C^=D^=90°.

Do E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA nên AE = EB = BF = FC = CG = GD = DH = HA.

Xét ∆AHE và ∆BFE có:

 A^=B^=90°, AH = BF, AE = BE

Do đó ∆AHE = ∆BFE (hai cạnh góc vuông).

Suy ra HE = FE (hai cạnh tương ứng).

Tương tự, ta chứng minh được HE = EF = FG = GH.

Khi đó, tứ giác EFGH là hình thoi.

Xét ∆AHE có A^=90° và AH = AE nên ∆AHE vuông cân tại A, suy ra AEH^=45°.

Tương tự, ta có BEF^=45°

Do đó HEF^=180°-AEH^-BEF^=180°-45°-45°=90°.

Như vậy, hình thoi EFGH là hình vuông. Suy ra EFGH nội tiếp đường tròn.

Chứng minh tương tự ta được tứ giác IKPQ là hình vuông và nội tiếp đường tròn.

b) Xét ∆ABC vuông cân tại B (do  và BA = BC) , theo định lí Pythagore, ta có:

AC2 = AB2 + BC2 = AB2 + AB2 = 2AB2.

Suy ra AC=AB2.

Bán kính đường tròn ngoại tiếp hình vuông ABCD là: R1=AC2=AB22.

Tương tự, với ∆AHE vuông cân tại A, ta có: HE=AE2=AB22.

Với ∆HEF vuông cân tại E, ta có: HF=HE2=AB22·2=AB.

Bán kính đường tròn ngoại tiếp hình vuông EFGH là: R2=HF2=AB2.

Chứng minh tương tự, ta có bán kính đường tròn ngoại tiếp hình vuông IKPQ là: R3=IP2=IK22=IE2·22=IE=HE2=AB222=AB24.

Ta có tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH là: R1R2=AB22AB2=22·2=2.

Tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ là:R2R3=AB2AB24=12·42=2.

Vậy tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tứ giác ABCD nội tiếp đường tròn. Tính số đo mỗi góc còn lại của tứ giác đó trong mỗi trường (ảnh 1)

tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.

Do đó ta có: A^+C^=180°, B^+D^=180°

a) Ta có: A^+C^=180°  A^=3C^

Suy ra 3C^+C^=180° hay 4C^=180° nên C^=45°.

Do đó A^=3C^=3·45°=135°.

Ta có B^+D^=180° và B^=5D^

Suy ra 5D^+D^=180° hay 6D^=180° nên D^=30°.

Do đó B^=5D^=5·30°=150°.

Vậy A^=135°, B^=150°, C^=45°,D^=30°.

b) Từ A^-C^=12° D^-B^=76° ta có A^=C^+12° và D^=B^+76°

Ta có A^+C^=180° A^=C^+12°

Suy ra C^+12°+C^=180° hay 2C^=168° nên C^=84°.

Do đó A^=C^+12°=84°+12°=96°.

Ta có B^+D^=180° và D^=B^+76°

Suy ra B^+B^+76°=180° hay 2B^=104° nên B^=52°

Do đó D^=B^+76°=52°+76°=128°.

Vậy A^=96°,B=52°,C^=84°,D^=128°.

c) Từ A^=7B^ A^+2B^=180° ta có 7B^+2B^=180°

Hay 9B^=180° nên B^=20°.

Ta có:

• A^=7B^=7·20°=140°.

A^+C^=180° suy ra C^=180°-A^=180°-140°=40°;

B^+D^=180° suy ra D^=180°-B^=180°-20°=160°.

Vậy A^=140°, B^=20°, C^=40°, D^=160°.

d) Từ D^-C^=20° ta có D^=C^+20°

D^+C^=100° nên C^+20°+C^=100°

Hay 2C^=80° suy ra C^=40°

Ta có:

• D^=C^+20°=40°+20°=60°;

A^+C^=180° suy ra A^=180°-C^=180°-40°=140°

B^+D^=180° suy ra B^=180°-D^=180°-60°=120°

Vậy A^=140°, B^=120°, C^=40°, D^=60°.

Lời giải

Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB  (ảnh 1)

a) Gọi I là trung điểm của MF.

Xét ∆CMF vuông tại C nên điểm C nằm trên đường tròn đường kính MF.

Do ABCD là hình vuông nên ∆MAF vuông tại A, do đó điểm A nằm trên đường tròn đường kính MF.

Khi đó, bốn điểm A, M, C, F cùng nằm trên đường tròn đường kính MF, do đó tứ giác AMCF nội tiếp đường tròn đường kính MF.

Suy ra  (hai góc nội tiếp cùng chắn cung MA) hay NCA^=MFN^.

Tương tự, ta chứng minh được tứ giác NACE nội tiếp đường tròn đường kính NE, nên NEA^=NCA^ (hai góc nội tiếp cùng chắn cung NA).

b) Do ABCD là hình vuông nên AC là đường phân giác của BAD^, do đó BAC^=CAD^=12BAD^=12·90°=45° hay EAC^=45°

Ta có tứ giác NACE nội tiếp đường tròn nên  (hai góc nội tiếp cùng chắn cung EC).

NEC^=90° nên tam giác CEN vuông cân tại C.

Vì thế CN = CE.

Tương tự, tam giác CMF vuông cân tại C suy ra CM = CF.

Do đó CM + CN = CF + CE = EF.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho xAy^=60° và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; kẻ đường thẳng BM vuông góc với Ax cắt Ay tại K (Hình 14).

Cho ^xAy và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; (ảnh 1)

Chứng minh:

a) Các tứ giác AMBN, HMNK là các tứ giác nội tiếp đường tròn;

b) HK = 2MN.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP