Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).
Chứng minh:
a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.
b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).

Chứng minh:
a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.
b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Quảng cáo
Trả lời:
a) Do ABCD là hình vuông nên AB = BC = CD = DA và .
Do E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA nên AE = EB = BF = FC = CG = GD = DH = HA.
Xét ∆AHE và ∆BFE có:
, AH = BF, AE = BE
Do đó ∆AHE = ∆BFE (hai cạnh góc vuông).
Suy ra HE = FE (hai cạnh tương ứng).
Tương tự, ta chứng minh được HE = EF = FG = GH.
Khi đó, tứ giác EFGH là hình thoi.
Xét ∆AHE có và AH = AE nên ∆AHE vuông cân tại A, suy ra .
Tương tự, ta có
Do đó
Như vậy, hình thoi EFGH là hình vuông. Suy ra EFGH nội tiếp đường tròn.
Chứng minh tương tự ta được tứ giác IKPQ là hình vuông và nội tiếp đường tròn.
b) ⦁ Xét ∆ABC vuông cân tại B (do và BA = BC) , theo định lí Pythagore, ta có:
AC2 = AB2 + BC2 = AB2 + AB2 = 2AB2.
Suy ra .
Bán kính đường tròn ngoại tiếp hình vuông ABCD là: .
⦁ Tương tự, với ∆AHE vuông cân tại A, ta có: .
Với ∆HEF vuông cân tại E, ta có:
Bán kính đường tròn ngoại tiếp hình vuông EFGH là:
⦁ Chứng minh tương tự, ta có bán kính đường tròn ngoại tiếp hình vuông IKPQ là:
⦁ Ta có tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH là:
Tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ là:
Vậy tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.
Do đó ta có:
a) ⦁ Ta có: và
Suy ra hay nên .
Do đó .
⦁ Ta có và
Suy ra hay nên .
Do đó .
Vậy .
b) Từ và ta có và
• Ta có và
Suy ra hay nên .
Do đó .
• Ta có và
Suy ra hay nên
Do đó .
Vậy .
c) Từ và ta có
Hay nên .
Ta có:
• .
• suy ra
• suy ra .
Vậy .
d) Từ ta có
Mà nên
Hay suy ra
Ta có:
•
• suy ra
• suy ra
Vậy .
Lời giải

a) Gọi I là trung điểm của MF.
Xét ∆CMF vuông tại C nên điểm C nằm trên đường tròn đường kính MF.
Do ABCD là hình vuông nên ∆MAF vuông tại A, do đó điểm A nằm trên đường tròn đường kính MF.
Khi đó, bốn điểm A, M, C, F cùng nằm trên đường tròn đường kính MF, do đó tứ giác AMCF nội tiếp đường tròn đường kính MF.
Suy ra (hai góc nội tiếp cùng chắn cung MA) hay .
Tương tự, ta chứng minh được tứ giác NACE nội tiếp đường tròn đường kính NE, nên (hai góc nội tiếp cùng chắn cung NA).
b) Do ABCD là hình vuông nên AC là đường phân giác của , do đó hay
Ta có tứ giác NACE nội tiếp đường tròn nên (hai góc nội tiếp cùng chắn cung EC).
Mà nên tam giác CEN vuông cân tại C.
Vì thế CN = CE.
Tương tự, tam giác CMF vuông cân tại C suy ra CM = CF.
Do đó CM + CN = CF + CE = EF.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
