Câu hỏi:

13/09/2024 290

Cho xAy^=60° và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; kẻ đường thẳng BM vuông góc với Ax cắt Ay tại K (Hình 14).

Cho ^xAy và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; (ảnh 1)

Chứng minh:

a) Các tứ giác AMBN, HMNK là các tứ giác nội tiếp đường tròn;

b) HK = 2MN.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ^xAy và điểm B nằm trong góc xAy. Kẻ đường thẳng BN vuông góc với Ay cắt Ax tại H; (ảnh 2)

a) Gọi I, J lần lượt là trung điểm của AB, HK.

Khi đó MI, NI lần lượt là các đường trung tuyến ứng với cạnh huyền AB của các tam giác vuông AMB, ANB nên IM=IN=IA=IB=AB2.

Suy ra tứ giác AMBN nội tiếp đường tròn tâm I, đường kính AB.

Tương tự, tứ giác HMNK nội tiếp đường tròn tâm J, đường kính HK.

b) Do tứ giác HMNK nội tiếp đường tròn nên tổng hai góc đối bằng 180°, suy ra HMN^+NKH^=180°

AMN^+HMN^=180° (hai góc kề bù)

Nên AMN^=NKH^(=180°-HMN^) hay AMN^=AKH^.

Xét ∆AMN và ∆AKH có:

 KAH^ là góc chung và AMN^=AKH^.

Do đó ∆AMN ᔕ ∆AKH (g.g)

Suy ra MNAH=ANAH (1)

Lại có tam giác AHN vuông tại N nên

                                                                cosHAN^=ANAH hay cos60°=ANAH, tức là ANAH=12.

Do đó AH = 2AN (2)

Từ (1) và (2) suy ra MNKH=ANAH nên HK = 2MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân ở A, H là trung điểm của BC và  Đường vuông góc với AB tại A cắt đường thẳng BC ở D. Kẻ DE vuông góc với AC. Chứng minh:

a) AH = EH;

b) DCE^=ABD^.

Xem đáp án » 13/09/2024 519

Câu 2:

Cho tam giác ABC vuông cân tại C và nội tiếp đường tròn (O; R). E là điểm tuỳ ý trên cung nhỏ AC. Gọi I là giao điểm của EB và AC. Kẻ IK vuông góc với AB. Chứng minh rằng khi E di chuyển trên cung nhỏ AC thì EK luôn đi qua một điểm cố định.

Xem đáp án » 13/09/2024 515

Câu 3:

Cho hình vuông ABCD. Trên cạnh AB lấy điểm M. Đường thẳng qua C vuông góc với CM cắt các tia AB, AD lần lượt tại E và F. Tia CM cắt đường thẳng AD tại N. Chứng minh rằng:

a) NCA^=MFN^ và NEA^=NCA^ ;

b) CM + CN = EF.

Xem đáp án » 13/09/2024 508

Câu 4:

Chứng minh rằng mỗi hình thang cân là một tứ giác nội tiếp đường tròn.

Xem đáp án » 13/09/2024 415

Câu 5:

Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Điểm E nằm trên cung nhỏ BC (E khác B và C). ED là tia đối của tia EB. Chứng minh EC là phân giác của góc AED và EA là phân giác của góc BEC.

Xem đáp án » 13/09/2024 413

Câu 6:

Ở Hình 13, hai đường tròn (O), (O’) giao nhau tại A, B và CD là một dây cung của (O). Tia CA cắt ( O’) tại E và tia DB cắt (O’) tại F. Chứng minh EF song song với CD.

Ở Hình 13, hai đường tròn (O), (O’) giao nhau tại A, B và CD là một dây cung của (O). Tia CA cắt ( O’) (ảnh 1)

Xem đáp án » 13/09/2024 334

Câu 7:

Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH, tiếp tục như vậy được tứ giác mới IKPQ (Hình 15).

Hình vuông ABCD có cạnh bằng 1, người ta nối trung điểm các cạnh liên tiếp của nó để tạo thành tứ giác EFGH (ảnh 1)

Chứng minh:

a) Tứ giác EFGH và tứ giác IKPQ là các tứ giác nội tiếp đường tròn.

b) Tỉ số bán kính đường tròn ngoại tiếp hình vuông ABCD và bán kính của đường tròn ngoại tiếp tứ giác EFGH bằng tỉ số bán kính đường tròn ngoại tiếp tứ giác EFGH và bán kính đường tròn ngoại tiếp tứ giác IKPQ.

Xem đáp án » 13/09/2024 324

Bình luận


Bình luận