Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Quảng cáo
Trả lời:

Giả sử trái lại có hai dây cung BD và AC (không đi qua tâm O) cắt nhau tại trung điểm mỗi đường. Suy ra tứ giác ABCD là hình bình hành.
Do đó .
Mặt khác, tứ giác ABCD nội tiếp đường tròn (O) nên .
Suy ra .
Từ đó suy ra AC là đường kính của đường tròn (O) hay AC đi qua tâm O, mâu thuẫn với điều đã giả sử.
Vậy trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.
Do đó ta có:
a) ⦁ Ta có: và
Suy ra hay nên .
Do đó .
⦁ Ta có và
Suy ra hay nên .
Do đó .
Vậy .
b) Từ và ta có và
• Ta có và
Suy ra hay nên .
Do đó .
• Ta có và
Suy ra hay nên
Do đó .
Vậy .
c) Từ và ta có
Hay nên .
Ta có:
• .
• suy ra
• suy ra .
Vậy .
d) Từ ta có
Mà nên
Hay suy ra
Ta có:
•
• suy ra
• suy ra
Vậy .
Lời giải

⦁ Vì ∆ABC đều nên .
Do tứ giác ABEC nội tiếp đường tròn nên tổng hai góc đối nhau bằng 180°, suy ra
Mà (hai góc kề bù)
Do đó
Xét đường tròn (O) có (hai góc nội tiếp cùng chắn cung AC) nên .
Do đó, EC là đường phân giác của góc AED.
⦁ Tương tự ta có và .
Do đó hay EA là đường phân giác của góc BEC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
