Câu hỏi:
13/09/2024 313
Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Chứng minh rằng trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Quảng cáo
Trả lời:

Giả sử trái lại có hai dây cung BD và AC (không đi qua tâm O) cắt nhau tại trung điểm mỗi đường. Suy ra tứ giác ABCD là hình bình hành.
Do đó .
Mặt khác, tứ giác ABCD nội tiếp đường tròn (O) nên .
Suy ra .
Từ đó suy ra AC là đường kính của đường tròn (O) hay AC đi qua tâm O, mâu thuẫn với điều đã giả sử.
Vậy trong một đường tròn, hai dây không đi qua tâm không thể cắt nhau tại trung điểm mỗi đường.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì tứ giác ABCD nội tiếp đường tròn nên tổng hai góc đối bằng 180°.
Do đó ta có:
a) ⦁ Ta có: và
Suy ra hay nên .
Do đó .
⦁ Ta có và
Suy ra hay nên .
Do đó .
Vậy .
b) Từ và ta có và
• Ta có và
Suy ra hay nên .
Do đó .
• Ta có và
Suy ra hay nên
Do đó .
Vậy .
c) Từ và ta có
Hay nên .
Ta có:
• .
• suy ra
• suy ra .
Vậy .
d) Từ ta có
Mà nên
Hay suy ra
Ta có:
•
• suy ra
• suy ra
Vậy .
Lời giải

a) Gọi I, J lần lượt là trung điểm của AB, HK.
Khi đó MI, NI lần lượt là các đường trung tuyến ứng với cạnh huyền AB của các tam giác vuông AMB, ANB nên
Suy ra tứ giác AMBN nội tiếp đường tròn tâm I, đường kính AB.
Tương tự, tứ giác HMNK nội tiếp đường tròn tâm J, đường kính HK.
b) Do tứ giác HMNK nội tiếp đường tròn nên tổng hai góc đối bằng 180°, suy ra
Mà (hai góc kề bù)
Nên hay .
Xét ∆AMN và ∆AKH có:
là góc chung và .
Do đó ∆AMN ᔕ ∆AKH (g.g)
Suy ra (1)
Lại có tam giác AHN vuông tại N nên
hay tức là .
Do đó AH = 2AN (2)
Từ (1) và (2) suy ra nên HK = 2MN.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.