Câu hỏi:

13/09/2024 208

Cho lục giác đều ABCDEF cạnh bằng a.

a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn. Tính theo a bán kính của đường tròn đó.

b) Chứng minh các tam giác ACE, BFD là các tam giác đều. Tính theo a bán kính đường tròn nội tiếp tương ứng của các tam giác đó.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lục giác đều ABCDEF cạnh bằng a.  a) Chứng minh sáu điểm A, B, C, D, E, F cùng thuộc một đường tròn (ảnh 1)

a) Vì ABCDEF là lục giác đều nên ba đường chéo chính AD, BE, CF bằng nhau và cắt nhau tại trung điểm O của mỗi đường, do đó OA = OB = OC = OD = OE = OF, nên sáu điểm A, B, C, D, E, F cùng thuộc đường tròn đường kính AD.

Vì ABCDEF là lục giác đều nên độ dài đường chéo chính AD gấp 2 lần độ dài cạnh, mà AD là đường kính của đường tròn đi qua sáu điểm A, B, C, D, E, F nên bán kính của đường tròn đi qua sáu điểm A, B, C, D, E, F bằng độ dài cạnh của lục giác đều và bằng a.

b) Vì ABCDEF là lục giác đều nên các góc ở các đỉnh của lục giác đều bằng nhau, suy ra ABC^=BCD^=CDE^=DEF^=EAF^=AFB^.

Vì ABCDEF là lục giác đều nên các cạnh bằng nhau, suy ra AB = BC = CD = DE = EF = FA.

Xét ∆ABC và ∆CDE có:

AB = CD, ABC^=CDE^, BC = DE.

Do đó ∆ABC = ∆CDE (c.g.c)

Suy ra AC = CE (hai cạnh tương ứng).

Chứng minh tương tự, ta có kết quả AC = CE = AE = BD = DF = BF.

Do AC = CE = AE nên ∆ACE là tam giác đều.

Do BF = BD = DF nên ∆BFD là tam giác đều.

Gọi H là giao điểm của AC và OB.

Ta có OA = OB = AB = a nên ∆OAB là tam giác đều, do đó ABO^=60° hay ABH^=60°.

Xét tứ giác OABC có OA = OC = AB = BC nên OABC là hình thoi, do đó hai đường chéo AC và OB vuông góc với nhau tại trung điểm H của mỗi đường.

Từ đó ta có AC = 2AH.

Xét ∆ABH vuông tại H, ta có:

AH=AB·sin ABH^=a·sin 60°=a32.

Suy ra AC=2AH=2·a32=a3.

Vì ∆ACE là tam giác đều nên bán kính đường tròn nội tiếp của ∆ACE là AC36=a3·36=a2.

Vì AC = CE = AE = BF = FD = BD nên ta có ∆ACE = ∆BFD (c.c.c).

Do đó bán kính đường tròn nội tiếp tương ứng của ∆ACE và ∆BFD bằng nhau, và bằng a2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD có C^+D^=90°. Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC, CA. Chứng minh bốn điểm M, N, P, Q cùng thuộc một đường tròn. Tìm tâm đường tròn đó.

Xem đáp án » 13/09/2024 2,447

Câu 2:

Cho đường tròn (O; R). Từ điểm M nằm ngoài đường tròn (O; R), kẻ các tiếp tuyến MA và MB với đường tròn đó (A, B là các tiếp điểm) sao cho

a) Xác định tâm và bán kính đường tròn nội tiếp tam giác MAB.

b) Tính chu vi tam giác MAB.

c) Vẽ đường thẳng d đi qua M cắt đường tròn (O) tại hai điểm P, Q. Xác định vị trí của đường thẳng d sao cho MQ + MP đạt giá trị nhỏ nhất.

Xem đáp án » 14/09/2024 843

Câu 3:

Đường tròn tâm I nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại F và E. Kẻ CK vuông góc với BI. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh:

a) F, E, K thẳng hàng;

b) K, N, M thẳng hàng.

Xem đáp án » 13/09/2024 820

Câu 4:

Cho tam giác ABC có BC = 10 và BAC^=30°. Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 13/09/2024 623

Câu 5:

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:

a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp;

b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

Xem đáp án » 13/09/2024 370

Câu 6:

Cho đường tròn (I; r) cố định. Một tam giác ABC thay đổi, có chu vi bằng 16 cm và luôn ngoại tiếp đường tròn (I; r). Một tiếp tuyến song song với BC cắt các cạnh AB, AC lần lượt tại M và N. Tìm độ dài BC để MN có độ dài lớn nhất.

Xem đáp án » 14/09/2024 308

Câu 7:

Cho tam giác ABC vuông tại A có đường cao AH = 2,4 cm và ABAC=34. Tính bán kính đường tròn nội tiếp r và bán kính đường tròn ngoại tiếp R của tam giác ABC.

Xem đáp án » 13/09/2024 304

Bình luận


Bình luận