Câu hỏi:

15/09/2024 783

Chọn phương án đúng.

Căn bậc hai của 4 là

A. 2.

B. −2.

C. 2 và −2.

D. \(\sqrt 2 \)\( - \sqrt 2 .\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: 22 = 4.

Vậy căn bậc hai của 4 là 2 và −2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \[A = \frac{{\sqrt x + 2}}{{\sqrt x - 2}} - \frac{4}{{\sqrt x + 2}} = \frac{{{{\left( {\sqrt x + 2} \right)}^2} - 4\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\]

\( = \frac{{x + 4\sqrt x + 4 - 4\sqrt x + 8}}{{{{\left( {\sqrt x } \right)}^2} - {2^2}}} = \frac{{x + 12}}{{x - 4}}.\)

b) Tại x = 14 thì \(A = \frac{{14 + 12}}{{14 - 4}} = \frac{{26}}{{10}} = 2,6.\)

Lời giải

a) Sử dụng tính chất giao hoán và tính chất kết hợp của phép cộng ta có:

\(A = \left( {\frac{2}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 5}}} \right) - \frac{{10 - 8\sqrt x }}{{x + 5\sqrt x }}\)

\( = \frac{{2\left( {\sqrt x + 5} \right) + {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x \left( {\sqrt x + 5} \right)}} - \frac{{10 - 8\sqrt x }}{{\sqrt x \left( {\sqrt x + 5} \right)}}\)

\( = \frac{{2\sqrt x + 10 + x - 10 + 8\sqrt x }}{{\sqrt x \left( {\sqrt x + 5} \right)}}\)\( = \frac{{x + 10\sqrt x }}{{x + 5\sqrt x }}.\)

b) Xét hiệu \(A - 2 = \frac{{x + 10\sqrt x }}{{x + 5\sqrt x }} - \frac{{2\left( {x + 5\sqrt x } \right)}}{{x + 5\sqrt x }}\)

\( = \frac{{x + 10\sqrt x - 2x - 10\sqrt x }}{{x + 5\sqrt x }} = \frac{{ - x}}{{x + 5\sqrt x }}\)

\( = \frac{{ - {{\left( {\sqrt x } \right)}^2}}}{{\sqrt x \left( {\sqrt x + 5} \right)}} = \frac{{ - \sqrt x }}{{\sqrt x + 5}}.\)

Với x > 0 thì \(A - 2 = \frac{{ - \sqrt x }}{{\sqrt x + 5}} < 0\) nên giá trị của biểu thức A nhỏ hơn 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP