Câu hỏi:

15/09/2024 1,159

Một bạn muốn tính khoảng cách giữa hai địa điểm A, B ở hai bên hồ nước. Biết rằng các khoảng cách từ một điểm C đến A và đến B là CA = 90 m, CB = 150 m và \(\widehat {ACB} = 120^\circ \) (H.4.28). Hãy tính AB giúp bạn.

Một bạn muốn tính khoảng cách giữa hai địa điểm A, B ở hai bên hồ nước. Biết rằng các khoảng cách từ một điểm C đến A và đến B là CA = 90 m, CB = 150 m và \(\widehat {ACB} = 120^\circ \) (H.4.28). Hãy tính AB giúp bạn.   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kẻ đường cao AH của tam giác ABC thì C nằm giữa B và H.

Trong tam giác ACH, ta có

\(\widehat {ACH} = 180^\circ - 120^\circ = 60^\circ ,\)

\(HC = AC.\cos \widehat {ACH} = 90.\cos 60^\circ = 90.\frac{1}{2} = 45\) (m),

\(AH = AC.\sin \widehat {ACH} = 90.\sin 60^\circ = 90.\frac{{\sqrt 3 }}{2} = 45\sqrt 3 \) (m).

Từ đó BH = BC + HC = 150 + 45 = 195 (m),

\(A{B^2} = A{H^2} + B{H^2} = {\left( {45\sqrt 3 } \right)^2} + {195^2} = 44100\) suy ra \(AB = \sqrt {44100} = 210\) (m).

Vậy AB = 210 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu cần tính là đoạn BH.

Trong tam giác ABH, ta có

\(h = BH = AH.\sin A = 200.\sin 21^\circ \approx 72\) (m).

b) Đổi 9 km = 9 000 m.

Để lặn được 9 000 m, tàu cần 60 phút.

Để lặn sâu 1 m, tài cần \(\frac{{60}}{{9000}}\) phút. Do đó, để lặn sâu 200 m tàu cần

\(200 \cdot \frac{{60}}{{9\,\,000}} = \frac{{12\,\,000}}{{9\,\,000}} = \frac{4}{3}\) (phút) = 80 (giây).

Lời giải

(H.4.24)

Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết HB = 3 cm, HC = 6 cm, \(\widehat {HAC} = 60^\circ .\) Hãy tính độ dài các cạnh (làm tròn đến cm), số đo các góc của tam giác ABC (làm tròn đến độ). (ảnh 1)

Tam giác ACH vuông tại H, HC = 6 cm, \(\widehat {HAC} = 60^\circ .\)

Trong tam giác vuông AHC, ta có

\(\sin \widehat {HAC} = \frac{{CH}}{{AC}}\) nên \(AC = \frac{{CH}}{{\sin \widehat {HAC}}} = \frac{6}{{\sin 60^\circ }} = \frac{6}{{\frac{{\sqrt 3 }}{2}}} = 4\sqrt 3 \approx 7\) (cm),

\(AH = CH.\cot A = 6.\cot 60^\circ = 6.\frac{{\sqrt 3 }}{3} = 2\sqrt 3 \approx 3\) (cm),

\(\widehat {ACB}\) là góc phụ với \(\widehat {HAC}\) nên \(\widehat {ACB} = 90^\circ - \widehat {HAC} = 90^\circ - 60^\circ = 30^\circ .\)

Trong tam giác vuông AHB, ta có

AB2 = AH2 + BH2 = 32 + 32 = 18 nên \(AB = \sqrt {18} \approx 4\) (cm),

\[\tan B = \frac{{AH}}{{BH}} = \frac{3}{3}\] nên \(\widehat B \approx 45^\circ .\)

Trong tam giác ABC, ta có

\(\widehat {BAC} = 180^\circ - \widehat C - \widehat B = 180^\circ - 30^\circ - 45^\circ \approx 105^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP