Câu hỏi:

15/09/2024 457 Lưu

Tính các số liệu còn thiếu (dấu “?”) ở Hình 4.26 với góc làm tròn đến độ, với độ dài làm tròn đến chữ số thập phân thứ nhất.

Tính các số liệu còn thiếu (dấu “?”) ở Hình 4.26 với góc làm tròn đến độ, với độ dài làm tròn đến chữ số thập phân thứ nhất.   (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

(H.4.27)

Ta đặt tên các điểm như trong Hình 4.27.

Tính các số liệu còn thiếu (dấu “?”) ở Hình 4.26 với góc làm tròn đến độ, với độ dài làm tròn đến chữ số thập phân thứ nhất.   (ảnh 2)

Ở hình a): Trong tam giác ABC vuông tại A, theo định lí về hai cạnh góc vuông, ta có

\(AB = AC.\tan C = 3.\tan 40^\circ \approx 2,5.\)

Ở hình b): Ta có QM = NP = 7.

Trong tam giác MPQ vuông tại Q, ta có

\(\sin \widehat {MPQ} = \frac{{MQ}}{{MP}} = \frac{7}{{10}}\) nên \(\widehat {MPQ} \approx 44^\circ .\)

Ở hình c): Trong tam giác IJK vuông tại I, ta có

\(\tan \widehat {IJK} = \frac{{IK}}{{IJ}} = \frac{7}{5}\) nên \(\widehat {IJK} \approx 54^\circ .\)

Ở hình d): Trong tam giác OST vuông tại T, ta có

\(\sin 35^\circ = \sin \widehat {SOT} = \frac{{ST}}{{SO}}\) nên \(ST = \sin 35^\circ .SO = \sin 35^\circ .3 \approx 1,7\)

Trong tam giác OUV vuông tại V, ta có

OU = OS + SU = 3 + 2 = 5.

\(\sin 35^\circ = \sin \widehat {UOV} = \frac{{UV}}{{OU}}\) nên \(UV = OU.\sin 35^\circ = 5.\sin 35^\circ \approx 2,8.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Độ sâu cần tính là đoạn BH.

Trong tam giác ABH, ta có

\(h = BH = AH.\sin A = 200.\sin 21^\circ \approx 72\) (m).

b) Đổi 9 km = 9 000 m.

Để lặn được 9 000 m, tàu cần 60 phút.

Để lặn sâu 1 m, tài cần \(\frac{{60}}{{9000}}\) phút. Do đó, để lặn sâu 200 m tàu cần

\(200 \cdot \frac{{60}}{{9\,\,000}} = \frac{{12\,\,000}}{{9\,\,000}} = \frac{4}{3}\) (phút) = 80 (giây).

Lời giải

(H.4.24)

Cho tam giác ABC có chân đường cao AH nằm giữa B và C. Biết HB = 3 cm, HC = 6 cm, \(\widehat {HAC} = 60^\circ .\) Hãy tính độ dài các cạnh (làm tròn đến cm), số đo các góc của tam giác ABC (làm tròn đến độ). (ảnh 1)

Tam giác ACH vuông tại H, HC = 6 cm, \(\widehat {HAC} = 60^\circ .\)

Trong tam giác vuông AHC, ta có

\(\sin \widehat {HAC} = \frac{{CH}}{{AC}}\) nên \(AC = \frac{{CH}}{{\sin \widehat {HAC}}} = \frac{6}{{\sin 60^\circ }} = \frac{6}{{\frac{{\sqrt 3 }}{2}}} = 4\sqrt 3 \approx 7\) (cm),

\(AH = CH.\cot A = 6.\cot 60^\circ = 6.\frac{{\sqrt 3 }}{3} = 2\sqrt 3 \approx 3\) (cm),

\(\widehat {ACB}\) là góc phụ với \(\widehat {HAC}\) nên \(\widehat {ACB} = 90^\circ - \widehat {HAC} = 90^\circ - 60^\circ = 30^\circ .\)

Trong tam giác vuông AHB, ta có

AB2 = AH2 + BH2 = 32 + 32 = 18 nên \(AB = \sqrt {18} \approx 4\) (cm),

\[\tan B = \frac{{AH}}{{BH}} = \frac{3}{3}\] nên \(\widehat B \approx 45^\circ .\)

Trong tam giác ABC, ta có

\(\widehat {BAC} = 180^\circ - \widehat C - \widehat B = 180^\circ - 30^\circ - 45^\circ \approx 105^\circ .\)