Câu hỏi:
17/09/2024 370
Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó.
Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}.\)
Cho nửa đường tròn đường kính AB và một điểm M tùy ý thuộc nửa đường tròn đó.
Chứng minh rằng khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}.\)
Quảng cáo
Trả lời:
(H.5.9)

Gọi H là chân đường cao hạ từ M xuống AB.
Khi đó, độ dài đoạn MH là khoảng cách từ M đến AB.
Gọi M' là điểm đối xứng với M qua AB. Khi đó, H là trung điểm của MM', tức là MH = HM'.
Mặt khác, do AB là đường kính của đường tròn nên M' thuộc đường tròn (O).
Suy ra MM' là dây cung của đường tròn.
Do đó \[MM' \le AB,\] hay 2MH ≤ AB, suy ra \(MH \le \frac{{AB}}{2}.\)
Vậy khoảng cách từ M đến AB không lớn hơn \(\frac{{AB}}{2}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(H.5.10)

Theo giả thiết, ta có OA = OB = 5 cm; AB = 6 cm.
a) Gọi C là trung điểm của AB, ta có AC = BC = 3 cm.
Trong tam giác OAB cân tại O (OA = OB) có OC là đường trung tuyến nên cũng là đường cao, nghĩa là OC ⊥ AB.
Do đó, OC là khoảng cách từ O đến đường thẳng AB.
Trong tam giác vuông AOC, ta có:
\(O{C^2} = O{A^2} - A{C^2} = {5^2} - {3^2} = 16,\) suy ra \[OC = \sqrt {16} = 4\] cm.
Vậy khoảng cách từ O đến đường thẳng AB là 4 cm.
b) Trong tam giác cân OAB, đường trung tuyến OC cũng là đường phân giác, mà \(\widehat {AOB} = 2\alpha \) nên \(\widehat {AOC} = \frac{1}{2}\widehat {AOB} = \alpha .\)
Xét tam giác AOC vuông tại C, ta có: \(\tan \alpha = \tan \widehat {AOC} = \frac{{AC}}{{OC}} = \frac{3}{4}.\)
Lời giải
a) Trong 1 giờ (60 phút), đầu kim phút vạch nên cả vòng tròn 360°.
Do đó trong 36 phút, đầu kim phút vạch một cung có số đo là
\(\frac{{36}}{{60}}.360^\circ = 216^\circ .\)
b) Trong 12 giờ (720 phút), đầu kim giờ vạch nên cả vòng tròn 360°.
Do đó trong 36 phút, đầu kim giờ vạch nên một cung có số đo là
\(\frac{{36}}{{720}}.360^\circ = 18^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.