Câu hỏi:

19/09/2024 3,485

Cho mặt cầu (S) có tâm I(2; −1; 4) và bán kính R = 5. Các điểm A(3; 1; 5), B(−1; 11; 14), C(6; 2; 4) nằm trong, nằm trên hay nằm ngoài mặt cầu (S)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

IA = \[\sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 1 - 1} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt 6 < 5\] hay IA < R.

Do đó, điểm A nằm trong mặt cầu (S).

IB = \[\sqrt {{{\left( {2 - \left( { - 1} \right)} \right)}^2} + {{\left( { - 1 - 11} \right)}^2} + {{\left( {4 - 14} \right)}^2}} \] \[ = \sqrt {253} > 5\] hay IB > R.

Do đó, điểm B nằm ngoài mặt cầu (S).

IC = \[\sqrt {{{\left( {2 - 6} \right)}^2} + {{\left( { - 1 - 2} \right)}^2} + {{\left( {4 - 4} \right)}^2}} \] = 5 = R.

Do đó, điểm C nằm trên mặt cầu (S).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi (S) là mặt cầu biểu diễn ranh giới của vùng phủ sáng của đèn trên hải đẳng trong không gian Oxyz.

Mặt cầu (S) có tâm I(20; 40; 60) và bán kính R = 3000, suy ra (S) có phương trình:

(x – 20)2 + (y – 40)2 + (z – 60)2 = 9 000 000.

b) Ta có: IM = \[\sqrt {{{400}^2} + {{300}^2} + {{\left( { - 60} \right)}^2}} = 20\sqrt {634} \] ≈ 504 < 3000, suy ra IM < R.

Do đó, người này có thể nhìn thấy được ánh sáng của đèn trên hải đăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP