Cho mặt cầu (S) có tâm I(2; −1; 4) và bán kính R = 5. Các điểm A(3; 1; 5), B(−1; 11; 14), C(6; 2; 4) nằm trong, nằm trên hay nằm ngoài mặt cầu (S)?
                                    
                                                                                                                        Cho mặt cầu (S) có tâm I(2; −1; 4) và bán kính R = 5. Các điểm A(3; 1; 5), B(−1; 11; 14), C(6; 2; 4) nằm trong, nằm trên hay nằm ngoài mặt cầu (S)?
Quảng cáo
Trả lời:
Ta có:
IA = \[\sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 1 - 1} \right)}^2} + {{\left( {5 - 4} \right)}^2}} = \sqrt 6 < 5\] hay IA < R.
Do đó, điểm A nằm trong mặt cầu (S).
IB = \[\sqrt {{{\left( {2 - \left( { - 1} \right)} \right)}^2} + {{\left( { - 1 - 11} \right)}^2} + {{\left( {4 - 14} \right)}^2}} \] \[ = \sqrt {253} > 5\] hay IB > R.
Do đó, điểm B nằm ngoài mặt cầu (S).
IC = \[\sqrt {{{\left( {2 - 6} \right)}^2} + {{\left( { - 1 - 2} \right)}^2} + {{\left( {4 - 4} \right)}^2}} \] = 5 = R.
Do đó, điểm C nằm trên mặt cầu (S).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
 - 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
 - Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
 - Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi (S) là mặt cầu biểu diễn ranh giới của vùng phủ sáng của đèn trên hải đẳng trong không gian Oxyz.
Mặt cầu (S) có tâm I(20; 40; 60) và bán kính R = 3000, suy ra (S) có phương trình:
(x – 20)2 + (y – 40)2 + (z – 60)2 = 9 000 000.
b) Ta có: IM = \[\sqrt {{{400}^2} + {{300}^2} + {{\left( { - 60} \right)}^2}} = 20\sqrt {634} \] ≈ 504 < 3000, suy ra IM < R.
Do đó, người này có thể nhìn thấy được ánh sáng của đèn trên hải đăng.
Lời giải
a) Ta có mặt cầu (S): (x – 20)2 + (y – 30)2 + (z – 10)2 = 400 có tâm I(20; 30; 10) và bán kính R = 20 m.
Ta có: IJ = d(I, (P)) = 10 m.
b) Ta có điểm M thuộc mặt cầu (S) nên IM = R = 20 m. Trong tam giác IJM vuông tại J, ta có: JM = \[\sqrt {I{M^2} - {\rm{I}}{{\rm{J}}^2}} = \sqrt {{{20}^2} - {{10}^2}} = 10\sqrt 3 \approx 17,32\] (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


