Câu hỏi:

19/09/2024 387

Viết phương trình mặt cầu (S) trong mỗi trường hợp sau:

a) (S) có tâm I(−5; 7; 6) và có bán kính R = 9.

b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2).

c) (S) có đường kính EF với E(1; 5; 9), F(11; 3; 1).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) (S) có tầm I(−5; 7; 6) và bán kính R = 9 nên có phương trình là:

(x + 5)2 + (y – 7)2 + (z – 6)2 = 92 hay (x + 5)2 + (y – 7)2 + (z – 6)2 = 81.

b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2) có:

Bán kính R = IM = \[\sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {0 - \left( { - 3} \right)} \right)}^2} + {{\left( { - 2 - 0} \right)}^2}} = \sqrt {29} \].

Phương trình mặt cầu (S) là: x2 + (y + 3)2 + z2 = 29.

c) Tâm I của mặt cầu (S) đường kính EF chính là trung điểm của EF.

Do đó, ta có: \[\left\{ \begin{array}{l}{x_I} = \frac{{1 + 11}}{2} = 6\\{y_I} = \frac{{5 + 3}}{2} = 4\\{z_1} = \frac{{9 + 1}}{2} = 5\end{array} \right.\] I(6; 4; 5).

Bán kính R = IE = \[\sqrt {{{\left( {6 - 1} \right)}^2} + {{\left( {5 - 4} \right)}^2} + {{\left( {9 - 5} \right)}^2}} = \sqrt {42} \].

Vậy phương trình mặt cầu (S) là: (x – 6)2 + (y – 4)2 + (z – 5)2 = 42.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi (S) là mặt cầu biểu diễn ranh giới của vùng phủ sáng của đèn trên hải đẳng trong không gian Oxyz.

Mặt cầu (S) có tâm I(20; 40; 60) và bán kính R = 3000, suy ra (S) có phương trình:

(x – 20)2 + (y – 40)2 + (z – 60)2 = 9 000 000.

b) Ta có: IM = \[\sqrt {{{400}^2} + {{300}^2} + {{\left( { - 60} \right)}^2}} = 20\sqrt {634} \] ≈ 504 < 3000, suy ra IM < R.

Do đó, người này có thể nhìn thấy được ánh sáng của đèn trên hải đăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP