Câu hỏi:

19/09/2024 862

Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính mặt của cầu đó.

a) 4x2 + y2 + z2 – 2x – 14y – 7z + 4 = 0;

b) x2 + y2 + z2 + 6x – 4y – 4z – 19 = 0;

c) x2 + y2 + z2 – 4x – 4y – 6z + 40 = 0.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Phương trình 4x2 + y2 + z2 – 2x – 14y – 7z + 4 = 0 không phải là phương trình mặt cầu do hệ số của x2 và y2 khác nhau.

b) Phương trình x2 + y2 + z2 + 6x – 4y – 4z – 19 = 0 có dạng

x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −3; b = 2; c = 2; d = −19.

Ta có: a2 + b2 + c2 − d = 9 + 4 + 4 + 19 = 36 > 0, suy ra phương trình đã cho là phương trình mặt cầu tâm I(−3; 2; 2), bán kính R = .

c) Phương trình x2 + y2 + z2 – 4x – 4y – 6z + 40 = 0, có dạng:

x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = 2; b = 2, c = 3 và d = 40.

Ta thấy a2 + b2 + c2 – d = 4 + 4 + 9 – 40 = −23 < 0.

Suy ra phương trình đã cho không phải là phương trình mặt cầu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi (S) là mặt cầu biểu diễn ranh giới của vùng phủ sáng của đèn trên hải đẳng trong không gian Oxyz.

Mặt cầu (S) có tâm I(20; 40; 60) và bán kính R = 3000, suy ra (S) có phương trình:

(x – 20)2 + (y – 40)2 + (z – 60)2 = 9 000 000.

b) Ta có: IM = \[\sqrt {{{400}^2} + {{300}^2} + {{\left( { - 60} \right)}^2}} = 20\sqrt {634} \] ≈ 504 < 3000, suy ra IM < R.

Do đó, người này có thể nhìn thấy được ánh sáng của đèn trên hải đăng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay