Câu hỏi:
28/09/2024 2,646
Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Chứng minh rằng:
a) Bốn điểm A, E, H, D cùng thuộc một đường tròn.
b) AH > DE.
Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Chứng minh rằng:
a) Bốn điểm A, E, H, D cùng thuộc một đường tròn.
b) AH > DE.
Quảng cáo
Trả lời:

a) Tam giác AEH vuông tại E nên 3 điểm A, E, H cùng nằm trên đường tròn đường kính AH.
Tam giác ADH vuông tại D nên 3 điểm A, D, H cùng nằm trên đường tròn đường kính AH.
Vậy 4 điểm A, E, H, D cùng nằm trên đường tròn đường kính AH.
b) Do góc A là góc nhọn nên dây DE của đường tròn đường kính AH không đi qua tâm của đường tròn (không phải đường kính).
Mà AH là đường kính của đường tròn đang xét nên AH < DE. (đpcm)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại O.
H là trung điểm của AB nên OH là đường trung tuyến đồng thời là đường cao của tam giác cân OAB.
Vây OH ⊥ AB. (đpcm)
b) H là trung điểm của AB nên (cm).
Áp dụng định lý Pythagore với tam giác OAH ta có:
(cm).
Vậy khoảng cách từ O đến AB là 3 cm.
Lời giải
Một chiếc đồng hồ có 12 số chỉ giờ.
Mỗi giờ, kim phút luôn đứng ở vị trí số 12, kim giờ di chuyển được vòng, ứng với cung .
Với các thời điểm từ 7 đến 11 giờ, số đo góc ở tâm sẽ được tính là góc nhọn bằng 360° trừ đi số đo cung mà kim giờ đã di chuyển.
Vậy số đo góc ở tâm tương ứng với các thời điểm tương ứng là:
a) 3 . 30° = 90°.
b) 6 . 30° = 180°.
c) 360° – 8 . 30° = 120°.
d) 360° – 11 . 30° = 30°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.