CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác nhọn ABC, hai đường cao BD và CE cắt nhau tại H. Chứng minh rằng:  (ảnh 1)

a) Tam giác AEH vuông tại E nên 3 điểm A, E, H cùng nằm trên đường tròn đường kính AH.

Tam giác ADH vuông tại D nên 3 điểm A, D, H cùng nằm trên đường tròn đường kính AH.

Vậy 4 điểm A, E, H, D cùng nằm trên đường tròn đường kính AH.

b) Do góc A là góc nhọn nên dây DE của đường tròn đường kính AH không đi qua tâm của đường tròn (không phải đường kính).

Mà AH là đường kính của đường tròn đang xét nên AH < DE. (đpcm)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP