Câu hỏi:

28/09/2024 318

Trong mặt phẳng toạ độ Oxy, cho đường tròn O;5, hai điểm A3;1 và B(–1; 2). Khi đó xảy ra:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm trong (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm ngoài (O), điểm B nằm trên (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có:

– OA=32+12=4<5 nên A nằm trong (O).

– OB=12+22=5 nên B nằm trên (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang cân ABCD (AB // CD).  a) Chứng minh rằng đường trung trực d của AB  (ảnh 1)

a) TH1: DA // CB

Do ABCD là hình thang cân mà DA // CB nên ABCD là hình chữ nhật.

Do đó đường trung trực d của AB cũng là đường trung trực của CD. (đpcm)

TH2: DA và CB cắt nhau tại S.

Mà ABCD là hình thang cân nên SAB^=SBA^=SDC^=SCD^.

Suy ra SAB và SDC cân tại S (hai góc ở đáy bằng nhau).

Do đó trong tam giác SAB cân tại S, đường trung trực d của AB cũng là đường phân giác của góc S.

Trong tam giác SCD cân tại S, đường phân giác d của góc S cũng là đường trung trực của CD.

Vậy đường trung trực d của AB cũng là đường trung trực của CD. (đpcm)

b) Giả sử O là tâm đường tròn đi qua 3 điểm A, B, C.

Khi đó OA = OB, suy ra đường trung trực d của AB đi qua O.

Mà đường trung trực của AB cũng là đường trung trực của CD nên O cũng nằm trên đường trung trực của CD.

Từ đó suy ra OC = OD.

Vậy D cũng thuộc đường tròn (O). (đpcm)