Câu hỏi:

13/10/2024 349

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Cho hàm số y = f(x)) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:  Trong các mệnh đề sau, có bao nhiêu mệnh đề sai? (ảnh 1)

Trong các mệnh đề sau, có bao nhiêu mệnh đề sai?

I. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 5} \right)\) và \(\left( { - 3; - 2} \right)\).

II. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;5} \right)\).

III. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\).

IV. Hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\).

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Nhìn vào bảng biến thiên ta thấy đồ thị hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\); nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\).

Suy ra II. Sai; III. Đúng; IV. Đúng.

Ta thấy khoảng \(\left( { - \infty ; - 3} \right)\) chứa khoảng \(\left( { - \infty ; - 5} \right)\) nên I Đúng.

Vậy chỉ có II sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

III. Vận dụng

Cho hàm số \(y = f(x)\). Hàm số \(y = f'(x)\) có đồ thị như hình vẽ:

Cho hàm số  y = f ( x ) . Hàm số  y = f ′ ( x )  có đồ thị như hình vẽ:  Khẳng định nào sau đây là khẳng định đúng? (ảnh 1)

Khẳng định nào sau đây là khẳng định đúng?

Xem đáp án » 13/10/2024 22,591

Câu 2:

I. Nhận biết

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào?

Cho hàm số  y = f ( x )  có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào? (ảnh 1)

Xem đáp án » 13/10/2024 11,554

Câu 3:

Cho hàm số y = f(x) = x3 + ax2 + bx + c có đồ thị như hình bên dưới.

Cho hàm số y = f(x) = x^3 + ax^2 + bx + c có đồ thị như hình bên dưới. (ảnh 1)

Chọn đáp án sai

Xem đáp án » 13/10/2024 7,923

Câu 4:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Cho hàm số  y = f ( x )  có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Xem đáp án » 13/10/2024 1,678

Câu 5:

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có đồ thị là đường cong như hình vẽ.

Cho hàm số  y = f ( x )  xác định, liên tục trên  R  và có đồ thị là đường cong như hình vẽ. Hàm số đạt cực đại tại điểm nào dưới đây? (ảnh 1)

Hàm số đạt cực đại tại điểm nào dưới đây?

Xem đáp án » 13/10/2024 1,055

Câu 6:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau

Cho hàm số  y = f ( x )  có bảng biến thiên như hình vẽ sau  Mệnh đề nào dưới đây đúng? (ảnh 1)

Mệnh đề nào dưới đây đúng?

Xem đáp án » 13/10/2024 844

Câu 7:

Hàm số \(y = \frac{{1 - 2x}}{{ - x + 2}}\) có bao nhiêu cực trị?

Xem đáp án » 13/10/2024 689

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store