Câu hỏi:

13/10/2024 216 Lưu

II. Thông hiểu

Đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 3}}\) có bao nhiêu đường tiệm cận?

A. \(0.\)

B. \(1.\)

C. \(2.\)

D. \(3.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x - 3}} = 2;\mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x - 3}} = 2\) nên y = 2 là một đường tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to {3^ + }} \frac{{2x - 1}}{{x - 3}} = + \infty ;\mathop {\lim }\limits_{x \to {3^ - }} \frac{{2x - 1}}{{x - 3}} = - \infty \) nên x = 3 là một đường tiệm cận đứng.

Vậy đồ thị hàm số có 2 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

\(y = \frac{{{x^2} + 2x + 3}}{{x + 1}} = x + 1 + \frac{2}{{x + 1}}\).

Có \[\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = 0;\]\[\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{2}{{x + 1}} = 0\] nên y = x + 1 là tiệm cận xiên của đồ thị hàm số.

Lời giải

Đáp án đúng là: A

Dựa vào đồ thị hàm số ta thấy đường tiệm cận xiên đi qua gốc tọa đô và điểm (2; 2) nên đường tiệm cận xiên có phương trình là y = x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. y = 2x.

B. y = x + 1.

C. y = 2x − 1.

D. y = 1 − 2x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( { - \frac{1}{2};\, - \frac{5}{2}} \right).\)

B. \(\left( { - \frac{5}{2};\,\frac{3}{2}} \right).\)

C. \(\left( { - \frac{5}{2};\, - \frac{1}{2}} \right).\)

D. \(\left( { - \frac{1}{2};\,\frac{5}{2}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP