Câu hỏi:
16/10/2024 169III. Vận dụng
Cho hàm số \(y = \frac{{x + m}}{{x - 2}}\) thỏa mãn \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = 4\). Mệnh đề nào dưới đây đúng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Hàm số \(y = \frac{{x + m}}{{x - 2}}\) xác định và liên tục trên \(\left[ {3;5} \right]\). Ta có \(y' = \frac{{ - 2 - m}}{{{{\left( {x - 2} \right)}^2}}}\).
+ Xét \( - 2 - m > 0 \Leftrightarrow m < - 2\,\,\left( * \right)\).
Khi đó hàm số đồng biến trên \(\left[ {3;5} \right]\).
Suy ra \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 3 \right) = 3 + m\). Do đó \(3 + m = 4 \Leftrightarrow m = 1\)( không thỏa \(\left( * \right)\)).
+ Xét \( - 2 - m < 0 \Leftrightarrow m > - 2\,\,\,\left( {**} \right)\).</>
Khi đó hàm số nghịch biến trện \(\left[ {3;5} \right]\).
Suy ra \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 5 \right) = \frac{{5 + m}}{3}\). Do đó \(\frac{{5 + m}}{3} = 4 \Leftrightarrow m = 7\)( thỏa \(\left( {**} \right)\)).
Vậy \(m = 7 > 5\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một vật chuyển động theo quy luật \(s = - \frac{1}{3}{t^3} + 6{t^2}\) với t (giây) là khoảng thời gian tính từ khi vật bắt đầu chuyển động và s (mét) là quãng đường vật di chuyển được trong khoảng thời gian đó. Hỏi trong khoảng thời gian 9 giây kể từ khi bắt đầu chuyển động, vận tốc lớn nhất của vật đạt được bằng bao nhiêu?
Câu 2:
Cho hàm số \(f\left( x \right) = \frac{{{x^2} - 4x + 7}}{{x - 1}}\). Gọi \(M,\;m\) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn \[\left[ {2;4} \right]\]. Tính \(M + m\) ?
Câu 3:
Cho hàm số \(y = f(x)\) liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có bảng biến thiên như sau
Giá trị lớn nhất của hàm số \(y = f(x)\) trên đoạn \(\left[ { - 1;3} \right]\) bằng
Câu 4:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Câu 5:
Giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - x} + \sqrt 3 \) trên tập xác định của nó là
Câu 6:
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{x - 2}}{{x + 1}}\) trên đoạn \(\left[ {0;\,2} \right]\).
Câu 7:
II. Thông hiểu
Cho hàm số \[y = f(x)\] liên tục trên đoạn \[\left[ { - 3;1} \right]\]và có đồ thị như hình vẽ. Gọi \[M\] và \[m\]lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \[\left[ { - 3;1} \right]\]. Giá trị của \[M - m\] bằng
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!